4.已知250x=100,($\frac{1}{2}$)y=100,則$\frac{1}{x}$-$\frac{2}{y}$=$\frac{3}{2}$.

分析 由題意知x=log250100,y=$lo{g}_{\frac{1}{2}}$100=-log2100,故$\frac{1}{x}$=log100250,-$\frac{1}{y}$=log1002,從而求得.

解答 解:∵250x=100,($\frac{1}{2}$)y=100,
∴x=log250100,y=$lo{g}_{\frac{1}{2}}$100=-log2100,
∴$\frac{1}{x}$=log100250,-$\frac{1}{y}$=log1002,
∴$\frac{1}{x}$-$\frac{2}{y}$=log100250+log1004=log1001000=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點評 本題考查了指數(shù)式與對數(shù)式的互化及對數(shù)運算的應(yīng)用,同時考查了整體思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a,b,c為△ABC的三邊長,若c2=a2+b2,且$\sqrt{3}$sinA+cosA=$\sqrt{2}$,則∠B的大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$(n∈N*),則an+1-an=$\frac{4n+1}{2n(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若a=log23,則2a+2-a=$\frac{10}{3}$,4a+4-a=$\frac{82}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2x-sinx($\frac{1}{3}π$≤x≤$\frac{5}{6}π$)的值域為[$\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$,$\frac{5π}{3}$$-\frac{1}{2}$}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)z2=4+3i(i為虛數(shù)單位),則復(fù)數(shù)z的模為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于任意非零向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow$=(b1,b2,b3),給出下面三個命題:
(1)$\overrightarrow{a}$∥$\overrightarrow$?$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=$\frac{{a}_{3}}{_{3}}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{{a}_{1}_{1}+{a}_{2}_{2}+{a}_{3}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{_{1}^{2}+_{2}^{2}+_{3}^{2}}}$;
(3)若a1=a2=a3=1,則$\overrightarrow{a}$為單位向量.
其中正確命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=log2(2x-1),解方程f(2x)=f-1(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x+3,若b1=1,bn+1=$\frac{_{n}}{1+_{n}•f(n-1)}$(n∈N*
(1)求b2,b3的值;
(2)求數(shù)列{bn}的通項公式;
(3)記cn=$\root{4}{_{n}}$(n∈N*),試證:c1+c2+…+c2010<89.

查看答案和解析>>

同步練習(xí)冊答案