13.“因為如果一條直線平行于一個平面,則該直線平行于平面內的所有直線(大前提),而直線b∥平面α,直線a?平面α(小前提),則直線b∥直線a(結論).”上面推理的錯誤是( 。
A.大前提錯導致結論錯B.小前提錯導致結論錯
C.推理形式錯導致結論錯D.大前提和小前提錯導致結論錯

分析 演繹推理的錯誤有三種可能,一種是大前提錯誤,第二種是小前提錯誤,第三種是邏輯結構錯誤,要判斷推理過程的錯誤原因,可以對推理過程的大前提和小前提及推理的整個過程,細心分析,不難得到正確的答案.

解答 解:直線平行于平面,則直線可與平面內的直線平行、異面、異面垂直.
故大前提錯誤,結論錯誤.
故選A.

點評 本題考查的知識點是演繹推理的基本方法及空間中線面關系,在使用三段論推理證明中,如果命題是錯誤的,則可能是“大前提”錯誤,也可能是“小前提”錯誤,也可能是邏輯錯誤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.求以直線x+3y+7=0與直線3x-2y-12=0的交點為圓心,半徑為3的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=x2-2x+1,x∈[0,3]的值域是[0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若圓x2+(y-1)2=r2與曲線(x-1)y=1沒有公共點,則半徑r的取值范圍(0,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,右焦點到直線$x=\frac{a^2}{c}$的距離為3,圓N的方程為(x-c)2+y2=a2+c2(c為半焦距),
(1)求橢圓M的方程和圓N的方程.
(2 ) 若直線l;y=kx+m是橢圓M和圓N的公切線,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°.求:
(1)$|\overrightarrow a+\overrightarrow b|$,$|\overrightarrow a-\overrightarrow b|$
(2)$\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,直線l:y=kx+$\sqrt{3}$過C的一個焦點F,O為坐標原點.
(1)求橢圓C的方程;
(2)若A(x1,y1),B(x2,y2)是橢圓上的兩點,$\overrightarrow{m}$=($\frac{{x}_{1}}$,$\frac{{y}_{1}}{a}$),$\overrightarrow{n}$=($\frac{{x}_{2}}$,$\frac{{y}_{2}}{a}$)且$\overrightarrow{m}$⊥$\overrightarrow{n}$,試問:△AOB的面積是否為定值?如果是,求出這個值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求下列各式的值:
(1)cos$\frac{25π}{3}$+tan($\frac{15π}{4}$);
(2)sin810°+tan765°-cos360°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“e是無限不循環(huán)小數(shù),所以e為無理數(shù).”該命題是演繹推理中的三段論推理,其中大前提是( 。
A.無理數(shù)是無限不循環(huán)小數(shù)B.有限小數(shù)或有限循環(huán)小數(shù)為有理數(shù)
C.無限不循環(huán)小數(shù)是無理數(shù)D.無限小數(shù)為無理數(shù)

查看答案和解析>>

同步練習冊答案