1.若圓x2+(y-1)2=r2與曲線(x-1)y=1沒有公共點(diǎn),則半徑r的取值范圍(0,$\sqrt{3}$).

分析 求得圓的圓心和半徑,設(shè)圓與曲線y=$\frac{1}{x-1}$相切的切點(diǎn)為(m,n),代入曲線的方程,求出函數(shù)的導(dǎo)數(shù)和切線的斜率,由兩點(diǎn)的斜率公式和兩直線垂直的條件:斜率之積為-1,解方程可得切點(diǎn),進(jìn)而得到此時(shí)圓的半徑,結(jié)合圖象即可得到所求范圍.

解答 解:圓的圓心為(0,1),半徑為r,
設(shè)圓與曲線y=$\frac{1}{x-1}$相切的切點(diǎn)為(m,n),
可得n=$\frac{1}{m-1}$,①
y=$\frac{1}{x-1}$的導(dǎo)數(shù)為y′=-$\frac{1}{(x-1)^{2}}$,
可得切線的斜率為-$\frac{1}{(m-1)^{2}}$,
由兩點(diǎn)的斜率公式可得$\frac{n-1}{m-0}$•(-$\frac{1}{(m-1)^{2}}$)=-1,
即為n-1=m(m-1)2,②
由①②可得n4-n3-n-1=0,
化為(n2-n-1)(n2+1)=0,
即有n2-n-1=0,解得n=$\frac{\sqrt{5}+1}{2}$或$\frac{1-\sqrt{5}}{2}$,
則有$\left\{\begin{array}{l}{m=\frac{1+\sqrt{5}}{2}}\\{n=\frac{1+\sqrt{5}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{m=\frac{1-\sqrt{5}}{2}}\\{n=\frac{1-\sqrt{5}}{2}}\end{array}\right.$.
可得此時(shí)圓的半徑r=$\sqrt{{m}^{2}+(n-1)^{2}}$=$\sqrt{3}$.
結(jié)合圖象即可得到圓與曲線沒有公共點(diǎn)的時(shí)候,
r的范圍是(0,$\sqrt{3}$).
故答案為:(0,$\sqrt{3}$).

點(diǎn)評(píng) 本題考查圓與曲線的位置關(guān)系的判斷,注意運(yùn)用導(dǎo)數(shù)求得切線的斜率,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,秋千拉繩長3m,靜止時(shí)踩板離地面高度為0.5m,某同學(xué)蕩秋千時(shí),踩板離地面最高處2m(左右對(duì)稱),求該同學(xué)蕩過的最大幅度AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若不等式組$\left\{\begin{array}{l}{x+ay+1≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,表示的平面區(qū)域的面積等于4,則a=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知2a=3b=k(k≠1),且2a+b=2ab,則實(shí)數(shù)k的值為( 。
A.18B.18 或-18C.$3\sqrt{2}$或 $-3\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點(diǎn),A,B分別為橢圓的上,下頂點(diǎn).過橢圓的右焦點(diǎn)F2的直線在y軸右側(cè)交橢圓于C,D兩點(diǎn).△F1CD的周長為8,且直線AC,BC的斜率之積為$-\frac{1}{4}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)四邊形ABCD的面積為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓Γ:$\frac{{a}^{2}}{^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn):
(1)求橢圓Г的方程:
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證:$\frac{1}{O{A}^{2}}$+$\frac{1}{O{B}^{2}}$為定值:
(3)設(shè)點(diǎn)C在Γ上運(yùn)動(dòng),OC⊥OD,且點(diǎn)O到直線CD距離為常數(shù)d(0<d<2),求動(dòng)點(diǎn)D的軌跡方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“因?yàn)槿绻粭l直線平行于一個(gè)平面,則該直線平行于平面內(nèi)的所有直線(大前提),而直線b∥平面α,直線a?平面α(小前提),則直線b∥直線a(結(jié)論).”上面推理的錯(cuò)誤是( 。
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)D.大前提和小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積最大值為$\sqrt{3}$,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線y=$\sqrt{3}$(x+2)相切.
(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2M⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=2sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)g(x)的圖象,則g(0)=( 。
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案