11.已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.

分析 (Ⅰ)根據(jù)正弦定理和以及兩角和正弦公式即可得到cos A=$\frac{1}{2}$,問題得以解決,
(Ⅱ)根據(jù)正弦定理和余弦定理可得bc的值,即可求出三角形的面積.

解答 解:(Ⅰ)因為2acos A=ccos B+bcos C,則由正弦定理得:2sin A•cos A=sin Ccos B+sin Bcos C,
所以2sin A•cos A=sin(B+C)=sin A,
又0<A<π,
所以sin A≠0,從而2cos A=1,cos A=$\frac{1}{2}$,
故A=$\frac{π}{3}$;
(Ⅱ)由A=$\frac{π}{3}$知sin A=$\frac{\sqrt{3}}{2}$,而△ABC的外接圓半徑為1,
故由正弦定理可得a=2sin A=$\sqrt{3}$,
再由余弦定理a2=b2+c2-2bccos A,
可得bc=b2+c2-a2=7-3=4,
∴S△ABC=$\frac{1}{2}$bcsin A=$\sqrt{3}$.

點評 此題考查正弦定理、余弦定理在解三角形中的應用.考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知實數(shù)x,y滿足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥2(x-3)}\end{array}\right.$,則z=2x+y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=3x2+ex-2(x<0)與g(x)=3x2+ln(x+t)圖象上存在關(guān)于y軸對稱的點,則t的取值范圍是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,e)C.(-e,$\frac{1}{e}$)D.(-$\frac{1}{e}$,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x-2k)-k<0,則k的取值范圍是(  )
A.(2,+∞)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x∈N|1<x<log2k},若集合A中至少有4個元素,則(  )
A.k>32B.k≥32C.k>16D.k≥16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知條件p:log2(1-x)<0,條件q:x>a,若p是q的充分不必要條件,則實數(shù)a的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+{a}^{2}+1,x≤0}\\{{x}^{2}+\frac{2}{x}-a,x>0}\end{array}\right.$
(Ⅰ)若對于任意的x∈R,都有f(x)≥f(0)成立,求實數(shù)a的取值范圍;
(Ⅱ)記函數(shù)f(x)的最小值為M(a),解關(guān)于實數(shù)a的不等式M(a-2)<M(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若 數(shù)列$\left\{{a_n}\right\}滿足{a_1}=2,{a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,則該數(shù)列的前2017項的乘積是( 。
A.-2B.-3C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)=xlnx+a在點(1,f(1))處的切線方程為y=kx+b,則a-b=1.

查看答案和解析>>

同步練習冊答案