【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.
(1)求圓面積的最小值;
(2)設直線與圓交于不同的兩點、,且,求圓的方程;
(3)設直線與(2)中所求圓交于點、,為直線上的動點,直線,與圓的另一個交點分別為,,求證:直線過定點.
【答案】(1)(2)(3)證明見解析;
【解析】
(1)由題意設圓心為,半徑,利用基本不等式求出半徑的最小值,從而得到面積的最小值;
(2)由,知,運用兩直線垂直的條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離的距離,即可得到所求圓的方程;
(3)設,,,求得,的坐標,和的方程,聯(lián)立圓的方程,運用韋達定理,.設,則.設直線的方程為,代入圓的方程,運用韋達定理,可得,的關(guān)系,即可得到所求定點.
解:(1)由題意可設圓的圓心為,
則半徑為(當且僅當時取等號),
所以圓的面積最小值為.
(2)由,知.
所以,解得.
當時,圓心到直線的距離小于半徑,符合題意;
當時,圓心到直線的距離大于半徑,不符合題意.
所以,所求圓的方程為.
(3)設,,,又知,,
所以,.
顯然,設,則.
從而直線方程為:,
與圓的方程聯(lián)立,
消去,可得:,
所以,,即;
同理直線方程為:,
與圓的方程聯(lián)立,
消去,可得:,
所以,,即.
所以;
.
消去參數(shù)整理得. ①
設直線的方程為,代入,
整理得.
所以,.
代入①式,并整理得,
即,解得或.
當時,直線的方程為,過定點;
當時,直線的方程為,過定點
第二種情況不合題意(因為,在直徑的異側(cè)),舍去.
所以,直線過定點.
科目:高中數(shù)學 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過10萬元時,按銷售利潤的15%進行獎勵;當銷售利潤超過10萬元時,前10萬元按銷售利潤的15%進行獎勵,若超出部分為t萬元,則超出部分按進行獎勵.記獎金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎金y關(guān)于銷售利潤x的關(guān)系式;
(2)如果業(yè)務員小王獲得3.5萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C1:(x+1)2+(y-3)2=9和圓C2:x2+y2-4x+2y-11=0.
(1)求兩圓公共弦所在直線的方程;
(2)求直線過點C(3,-5),且與公共弦垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.
(Ⅰ)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(Ⅱ)求證;
(Ⅲ)若,求數(shù)集中所有元素的和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】節(jié)能燈的質(zhì)量通過其正常使用時間來衡量,使用時間越長,表明質(zhì)量越好,且使用時間大于或等于6千小時的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用A,B兩種不同型號的節(jié)能燈做試驗,各隨機抽取部分產(chǎn)品作為樣本,得到試驗結(jié)果的頻率分布直方圖如圖所示.
以上述試驗結(jié)果中使用時間落入各組的頻率作為相應的概率.
(1)現(xiàn)從大量的A,B兩種型號節(jié)能燈中各隨機抽取兩件產(chǎn)品,求恰有兩件是優(yōu)質(zhì)品的概率;
(2)已知A型節(jié)能燈的生產(chǎn)廠家對使用時間小于6千小時的節(jié)能燈實行“三包”.通過多年統(tǒng)計發(fā)現(xiàn),A型節(jié)能燈每件產(chǎn)品的利潤y(單位:元)與其使用時間t(單位:千小時)的關(guān)系如下表:
使用時間t(單位:千小時) | t<4 | 4≤t<6 | t≥6 |
每件產(chǎn)品的利潤y(單位:元) | -10 | 10 | 20 |
若從大量的A型節(jié)能燈中隨機抽取兩件,其利潤之和記為X(單位:元),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由中央電視臺綜合頻道(CCTV-1)和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了兩個地區(qū)的名觀眾,得到如下的列聯(lián)表:
已知在被調(diào)查的名觀眾中隨機抽取名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為,且.
(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進行問卷調(diào)查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少.
(2)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系.
(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機抽取人,設抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.
附:參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰直角三角形中,,,分別是上的點,,為的中點將沿折起,得到如圖2所示的四棱椎,其中.
證明:平面;
求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某市主辦的科技知識競賽的學生成績中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間內(nèi)的學生人數(shù);
(2)從成績大于等于80分的學生中隨機選取2名,求至少有1名學生的成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com