分析 由a,b都是正數(shù),運用均值不等式,可得a+b≥2$\sqrt{ab}$,a2+b2≥2ab,a3+b3≥2$\sqrt{{a}^{3}^{3}}$,運用累乘法,即可得證.
解答 證明:a,b都是正數(shù),可得
a+b≥2$\sqrt{ab}$,
a2+b2≥2ab,
a3+b3≥2$\sqrt{{a}^{3}^{3}}$,
三式相乘,可得(a+b)(a2+b2)(a3+b3)≥8$\sqrt{ab}$•ab•$\sqrt{{a}^{3}^{3}}$=8a3b3,
當且僅當a=b,取得等號.
即有(a+b)(a2+b2)(a3+b3)≥8a3b3.
點評 本題考查不等式的證明,注意運用二元均值不等式和不等式的性質(zhì),考查運算和推理能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$或$\frac{3π}{4}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,3) | B. | (2,3) | C. | (1,2) | D. | ($\sqrt{5}$,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 64 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com