11.已知n>0,求證:3n+$\frac{4}{{n}^{2}}$≥3$\root{3}{9}$.

分析 由n>0,可得3n+$\frac{4}{{n}^{2}}$=$\frac{3n}{2}$+$\frac{3n}{2}$+$\frac{4}{{n}^{2}}$,運(yùn)用三元均值不等式:a+b+c≥3$\root{3}{abc}$(a,b,c>0,且a=b=c時(shí)取得等號(hào)),即可得證.

解答 證明:n>0時(shí),3n+$\frac{4}{{n}^{2}}$=$\frac{3n}{2}$+$\frac{3n}{2}$+$\frac{4}{{n}^{2}}$
≥3$\root{3}{\frac{3n}{2}•\frac{3n}{2}•\frac{4}{{n}^{2}}}$=3$\root{3}{9}$,
當(dāng)且僅當(dāng)$\frac{3n}{2}$=$\frac{4}{{n}^{2}}$,即n=$\root{3}{\frac{8}{3}}$時(shí),取得等號(hào).
則3n+$\frac{4}{{n}^{2}}$≥3$\root{3}{9}$.

點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用三元均值不等式,考查變形的技巧和推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,直線x+y-2=0在矩陣A=$[\begin{array}{l}{1}&{a}\\&{2}\end{array}]$對(duì)應(yīng)的變換作用下得到的直線仍為x+y-2=0,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若A(x,-1),B(1,3),C(2,5)三點(diǎn)共線,則x的值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左焦點(diǎn),P是C上一點(diǎn),線段PF過(guò)虛軸端點(diǎn)B,且B是線段PF的三等分點(diǎn),則C的離心率為(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{13}$C.$\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在數(shù)列{an}中,若a1=1,an•an+1=($\frac{1}{4}$)n-2,則滿足不等式$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2n}}$+$\frac{1}{{a}_{2n+1}}$<2016的正整數(shù)n的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.a(chǎn),b都是正數(shù),求證(a+b)(a2+b2)(a3+b3)≥8a3b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3,則t=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知(x2-x+2y)n的展開式中各項(xiàng)系數(shù)和為64,則其展開式中x5y3的系數(shù)為( 。
A.-480B.-360C.-240D.-160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知集合A={x|0≤x≤1},f(x)=x2-2ax+3a-2,(a∈R).
(1)設(shè)f(x)<0的解集為B,當(dāng)A∩B=A時(shí).求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈A時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案