8.已知等差數(shù)列{an}的前5項之和為15,則${2^{{a_2}+{a_4}}}$=( 。
A.16B.8C.64D.128

分析 利用等差數(shù)列的通項公式性質(zhì)及其求和公式即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì)可得:S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5({a}_{2}+{a}_{4})}{2}$=15,解得a2+a4=6.
∴${2^{{a_2}+{a_4}}}$=26=64.
故選:C.

點評 本題考查了等差數(shù)列的通項公式性質(zhì)及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.正方體ABCD-A1B1C1D1的棱長為8,P、Q分別是棱A1B1和B1C1的中點,則點A1到平面APQ的距離為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)F是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左焦點,P是C上一點,線段PF過虛軸端點B,且B是線段PF的三等分點,則C的離心率為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{13}$C.$\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.a(chǎn),b都是正數(shù),求證(a+b)(a2+b2)(a3+b3)≥8a3b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3,則t=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m$=(sinx,-1),$\overrightarrow n$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=${\overrightarrow m^2}$+$\overrightarrow m$•$\overrightarrow n$-2
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別為角A、B、C的對邊,已知f(B)=1,a=1,且△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知(x2-x+2y)n的展開式中各項系數(shù)和為64,則其展開式中x5y3的系數(shù)為( 。
A.-480B.-360C.-240D.-160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線C:y2=8x的焦點為F,點 M(-2,2),過點F且斜率為k的直線與C交于 A,B兩點,若∠AMB=90°,則k=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下面函數(shù)的最大值.
(1)y=3x-2x2+1;
(2)y=-$\frac{2}{x}$,x∈[-3,-1].

查看答案和解析>>

同步練習(xí)冊答案