【題目】下列有四個(gè)關(guān)于命題的判斷,其中正確的是()

A.命題,是假命題

B.命題,則是真命題

C.命題的否定是,

D.命題中,若,則是鈍角三角形是真命題

【答案】AB

【解析】

由導(dǎo)數(shù)的應(yīng)用可得,從而命題“”是假命題,

由原命題與逆否命題真假一致可得:,則,則命題“若,則”是真命題,

由全稱命題的否定可得:命題“”的否定是“,”,

由向量的夾角公式可得若,則,則B為銳角,從而不能判斷是鈍角三角形,即可得解.

解:設(shè),則,所以上單調(diào)遞增,所以,從而命題“,”是假命題,即選項(xiàng)A正確;

,則,所以命題“若,則”是真命題,即選項(xiàng)B正確;

由全稱命題的否定可得:命題“”的否定是“,”,即選項(xiàng)C是錯(cuò)誤的;

中,若,則,則B為銳角,從而不能判斷是鈍角三角形,所以選項(xiàng)D也是錯(cuò)誤的.

故選AB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在打擊拐賣兒童犯罪的活動(dòng)中,警方救獲一名男孩,為了確定他的家鄉(xiāng),警方進(jìn)行了調(diào)查:

知情人士A說(shuō),他可能是四川人,也可能是貴州人;

知情人士B說(shuō),他不可能是四川人;

知情人士C說(shuō),他肯定是四川人;

知情人士D說(shuō),他不是貴州人.

警方確定,只有一個(gè)人的話不可信.根據(jù)以上信息,警方可以確定這名男孩的家鄉(xiāng)是(

A.四川B.貴州

C.可能是四川,也可能是貴州D.無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A,B,C對(duì)應(yīng)的邊分別是ab,c,已知cos2A﹣3cosB+C=1

1)求角A的大。

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號(hào))

①最大值為,圖象關(guān)于直線對(duì)稱;

②圖象關(guān)于軸對(duì)稱;

③最小正周期為;

④圖象關(guān)于點(diǎn)對(duì)稱;

⑤在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=a-x2-2ax+lnx,aR

(1)當(dāng)a=1時(shí),求fx)在區(qū)間[1,e]上的最大值和最小值;

(2)求gx=fx+axx=1處的切線方程;

(3)若在區(qū)間(1+∞)上,fx)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,滿足:,M的中點(diǎn).

1)若,求向量與向量的夾角的余弦值;

2)若O是線段上任意一點(diǎn),且,求的最小值:

3)若點(diǎn)P內(nèi)一點(diǎn),且,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)()是函數(shù)的兩個(gè)極值點(diǎn),若,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A.命題,則的逆命題為真命題

B.為假命題,則均為假命題

C.為假命題,則為真命題

D.命題若兩個(gè)平面向量滿足,則不共線的否命題是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(為參數(shù),).

(1)求直線l的直角坐標(biāo)方程及曲線C的普通方程;

(2)證明:直線l和曲線C相交,并求相交弦的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案