精英家教網 > 高中數學 > 題目詳情

【題目】研究人員隨機調查統(tǒng)計了某地1000名“上班族”每天在工作之余使用手機上網的時間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數據用該區(qū)間的中點值作代表,則可估計該地“上班族”每天在工作之余使用手機上網的平均時間是(

A.1.78小時
B.2.24小時
C.3.56小時
D.4.32小時

【答案】C
【解析】解:根據頻率分布直方圖,得;
估計該地“上班族”每天在工作之余使用手機上網的平均時間為
=0.12×2×1+0.20×2×3+0.10×2×5+0.08×2×7=3.56(小時).
故選:C.
【考點精析】通過靈活運用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.01;固定部分為a元(a>0).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l經過點P(﹣2,5),且斜率為﹣
(1)求直線l的方程;
(2)若直線m與l平行,且點P到直線m的距離為3,求直線m的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數y=f(x),若在其定義域內存在x0 , 使得x0f(x0)=1成立,則稱x0為函數f(x)的“反比點”.下列函數中具有“反比點”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin(2x﹣ )圖象向左平移 個單位,所得函數圖象的一條對稱軸的方程是(
A.x=
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點A、B,且弦|AB|的長度為4
(1)求p的值;
(2)求證:OA⊥OB(O為原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場擬對某商品進行促銷,現有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據以往促銷的統(tǒng)計數據,若實施方案1,預計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案的第二個月的銷量是促銷前銷量的倍數.

(Ⅰ)求, 的分布列;

(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關系如下表,試比較哪種方案第二個月的利潤更大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將圓為參數)上的每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,得到曲線

(1)求出的普通方程;

(2)設直線 的交點為, ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位招聘職工分為筆試和面試兩個環(huán)節(jié),將筆試成績合格(滿分100分,及格60分,精確到個位數)的應聘者進行統(tǒng)計,得到如下的頻率分布表:

分組

頻數

頻率

[60,70]

0.16

(70,80]

22

(80,90]

14

0.28

(90,100]

合計

50

1

(Ⅰ)確定表中的值(直接寫出結果,不必寫過程)

(Ⅱ)面試規(guī)定,筆試成績在80分(不含80分)以上者可以進入面試環(huán)節(jié),面試時又要分兩關,首先面試官依次提出4個問題供選手回答,并規(guī)定,答對2道題就終止回答,通過第一關可以進入下一關,如果前三題均沒有答對,則不再回答第四題并且不能進入下一關,假定某選手獲得面試資格的概率與答對每道題的概率相等.

求該選手答完3道題而通過第一關的概率;

記該選手在面試第一關中的答題個數為X,求X的分布列及數學期望.

查看答案和解析>>

同步練習冊答案