【題目】研究人員隨機調查統(tǒng)計了某地1000名“上班族”每天在工作之余使用手機上網的時間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數據用該區(qū)間的中點值作代表,則可估計該地“上班族”每天在工作之余使用手機上網的平均時間是( )
A.1.78小時
B.2.24小時
C.3.56小時
D.4.32小時
科目:高中數學 來源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.01;固定部分為a元(a>0).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數y=f(x),若在其定義域內存在x0 , 使得x0f(x0)=1成立,則稱x0為函數f(x)的“反比點”.下列函數中具有“反比點”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點A、B,且弦|AB|的長度為4 .
(1)求p的值;
(2)求證:OA⊥OB(O為原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場擬對某商品進行促銷,現有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據以往促銷的統(tǒng)計數據,若實施方案1,預計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案的第二個月的銷量是促銷前銷量的倍數.
(Ⅰ)求, 的分布列;
(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關系如下表,試比較哪種方案第二個月的利潤更大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將圓為參數)上的每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,得到曲線
(1)求出的普通方程;
(2)設直線: 與的交點為, ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位招聘職工分為筆試和面試兩個環(huán)節(jié),將筆試成績合格(滿分100分,及格60分,精確到個位數)的應聘者進行統(tǒng)計,得到如下的頻率分布表:
分組 | 頻數 | 頻率 |
[60,70] | 0.16 | |
(70,80] | 22 | |
(80,90] | 14 | 0.28 |
(90,100] | ||
合計 | 50 | 1 |
(Ⅰ)確定表中的值(直接寫出結果,不必寫過程)
(Ⅱ)面試規(guī)定,筆試成績在80分(不含80分)以上者可以進入面試環(huán)節(jié),面試時又要分兩關,首先面試官依次提出4個問題供選手回答,并規(guī)定,答對2道題就終止回答,通過第一關可以進入下一關,如果前三題均沒有答對,則不再回答第四題并且不能進入下一關,假定某選手獲得面試資格的概率與答對每道題的概率相等.
求該選手答完3道題而通過第一關的概率;
記該選手在面試第一關中的答題個數為X,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com