已知A={y|y=x2-2};B={ y|y=-x2+2},則A∩B=(  )
A、{(-
2
,0),(
2
,0)}
B、[-
2
2
]
C、[-2,2]
D、{-
2
,
2
}
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:求出A與B中y的范圍確定出A與B,求出兩集合的交集即可.
解答: 解:由A中y=x2-2≥-2,得到A=[-2,+∞);
由B中y=-x2+2≤2,得到B=(-∞,2],
則A∩B=[-2,2].
故選:C.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+6xcosα-16cosβ,且對(duì)任意實(shí)數(shù)t,均有f(3-cost)≥0,f(1+2-|t|)≤0恒成立.
(Ⅰ)求證:f(4)≥0,f(2)=0;
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)是否存在實(shí)數(shù)a,使得函數(shù)g(x)=f(x)+(a+1)x2-8x-a+
21
2
在x∈[1,4]存在零點(diǎn)?若存在,求a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
10-x(x≤0)
lgx(x>0)
,則f[f(
1
10
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
(1)0.027-
1
3
-(-
1
6
)-2+2560.75-
1
3
+π0
;
(2)lo
g
9
4
-log2
3
32
+2log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是( 。
A、y=
x2
x
B、y=
3x3
C、y=(
x
)2
D、y=
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z滿(mǎn)足(2+i)z=-3+i,則z=( 。
A、2+iB、2-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+x-2<0},B={x|x>0},則集合A∪B等于( 。
A、{x|x>-2}
B、{x|0<x<1}
C、{x|x<1}
D、{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下三個(gè)關(guān)于圓錐曲線(xiàn)的命題:
①設(shè)A、B是兩定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
③雙曲線(xiàn)
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).
其中是真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-EFGH中,
AG
=x
AC
+y
AF
+z
AH
,則x+y+z=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案