11.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$,則z=2x+y的最大值是( 。
A.4B.6C.10D.12

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=2}\\{x+y=6}\end{array}\right.$,解得A(4,2),
化目標函數(shù)z=2x+y為y=-2x+z,由圖可知,當直線y=-2x+z過A時,直線在y軸上的截距最大,z有最大值為10.
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,△DEF中,已知DE=DF,點M在直線EF上從左到右運動(點M不與E、F重合),對于M的每一個位置(x,0),記△DEM的外接圓面積與△DMF的外接圓面積的比值為f(x),那么函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.空氣質(zhì)量問題,全民關注,有需求就有研究,某科研團隊根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器---霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達到18%以上,則認定霧炮除塵有效.
(1)根據(jù)以上數(shù)據(jù)估計霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個區(qū)域,每個區(qū)域投放3臺霧炮進行除塵(霧炮之間工作互不影響),若在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進行治理,求后期投入費用的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若0<x<y<1,則(  )
A.3y<3xB.log0.5x<log0.5yC.cosx<cosyD.sinx<siny

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知二元一次方程組的增廣矩陣為$(\begin{array}{l}{m}&{4}&{m+2}\\{1}&{m}&{m}\end{array})$,若此方程組無實數(shù)解,則實數(shù)m的值為( 。
A.m=±2B.m=2C.m=-2D.m≠±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如果將函數(shù)f(x)=sin(3x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{12}$個單位所得到的圖象關于原點對稱,那么φ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|x2-1=0},B={-1,2,5},則A∩B=( 。
A.{-1,2}B.{-1}C.{-1,5}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距為4$\sqrt{5}$,漸近線方程為2x±y=0,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{16}=1$B.$\frac{x^2}{16}-\frac{y^2}{4}=1$C.$\frac{x^2}{16}-\frac{y^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)g(x)=$\frac{4}{x}$-alnx(a∈R),f(x)=x2+g(x).
(1)當a=-2時,試求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間(0,1)內(nèi)有極值,求a的取值范圍.

查看答案和解析>>

同步練習冊答案