【題目】如圖,在ABC中,AB=AC,MBC的中點(diǎn),D、E、F分別是邊BC、CA、AB上的點(diǎn),且AE=AF,AEF的外接圓交線段AD于點(diǎn)P.若點(diǎn)P滿足,證明:.

【答案】見解析

【解析】

AEF的外接圓中,由于AE=AF,

.

因此,P、D、B、FP、D、C、E分別四點(diǎn)共圓.

于是,.

如圖,設(shè)P在邊BC、CA、AB上的射影分別為、、..

,得

.

設(shè)ABC的內(nèi)心為I,下證:B、I、P、C四點(diǎn)共圓.

聯(lián)結(jié).分別四點(diǎn)共圓,

.

又由式①,有.

所以,.

因此,..

,,

所以,

,

,.

.

因此,B、I、P、C四點(diǎn)共圓.

于是,.

如圖,延長AMABC的外接圓于點(diǎn)O,則AO為外接圓的直徑.于是,OBAB,OCAC,且OB=OI=OC.

因此,點(diǎn)O是點(diǎn)B、I、P、C所在圓的圓心.

從而,AB、AC的切線.

延長AD于點(diǎn)T,則.

所以,.

又由,得.

AB=AC,故

.

延長PM到點(diǎn)G,使GM=PM,則四邊形BPCG為平行四邊形有

.

由式②得.

由式③、④得.

所以,,即

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前64項(xiàng)和為(

A. 4290 B. 4160 C. 2145 D. 2080

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】男生4人和女生3人排成一排拍照留念.

1)有多少種不同的排法(結(jié)果用數(shù)值表示)?

2)要求兩端都不排女生,有多少種不同的排法(結(jié)果用數(shù)值表示)?

3)求甲乙兩人相鄰的概率.(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與橢圓有一個(gè)相同的焦點(diǎn),過點(diǎn)且與軸不垂直的直線與拋物線交于,兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)為.

(1)求拋物線的方程;

(2)試問直線是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足:,,(表示不大于x的最大整數(shù),).試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甜皮鴨,樂山人稱鹵鴨子,也稱嘉州甜皮鴨,是樂山著名美食,起源于樂山市夾江縣木城古鎮(zhèn),每年吸引成千上萬的外地人前來品嘗.某商家生產(chǎn)鹵鴨子,每公斤鴨子的成本為元,加工費(fèi)為元(為常數(shù)),且,設(shè)該商家每公斤鹵鴨子的售價(jià)為元(),日銷售量(單位:公斤),且為自然對(duì)數(shù)的底數(shù)).根據(jù)市場(chǎng)調(diào)查,當(dāng)每公斤鹵鴨子的出售價(jià)為元時(shí),日銷售量為公斤.

1)求該商家的每日利潤元與每公斤鹵鴨子的出售價(jià)元的函數(shù)關(guān)系式;

2)若,當(dāng)每公斤鹵鴨子的出售價(jià)為多少元時(shí),該商家的利潤最大,并求出利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,直線在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個(gè)正方體中,正確的命題是( )

A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角

查看答案和解析>>

同步練習(xí)冊(cè)答案