分析 求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,可得函數(shù)的極值與端點(diǎn)函數(shù)值比較,即可得到結(jié)論.
解答 解:∵f(x)=x3-3x+1在[-3,2],
∴f'(x)=3x2-3,
由f'(x)=0得 x1=-1,x2=1
當(dāng)x∈(-1,1)時(shí),f'(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈[-3,1),(1,2]時(shí),f'(x)>0,f(x)單調(diào)遞增.
∴x1=-1是函數(shù)f(x)的極大值點(diǎn),x1=1是函數(shù)f(x)的極小值點(diǎn),
計(jì)算函數(shù)在極小值和極大值點(diǎn)及區(qū)間端點(diǎn)的值,
得f(-1)=3,f(-3)=-17,f(1)=-3,f(2)=3,
∴f(x)=x3-3x+1在[-3,2]上的最大值是3,最小值是-17.
點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的最值,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(13+3\sqrt{7})c{m^2}$ | B. | $(12+4\sqrt{3})c{m^2}$ | C. | $(18+3\sqrt{7})c{m^2}$ | D. | $(15+3\sqrt{7})c{m^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | (-∞,3) | C. | (-∞,3] | D. | (-∞,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com