16.已知集合A={x∈Z|-1<x<3},B={x∈R|x2+x-6<0},則A∩B=( 。
A.{x|-1<x<2}B.{x|-3<x<3}C.{0,1}D.{0,1,2}

分析 分別求出關(guān)于集合A、B的范圍,取交集即可.

解答 解:A={x∈Z|-1<x<3}={0,1,2},
B={x∈R|x2+x-6<0}=(-3,2),
則A∩B={0,1},
故選:C.

點評 本題考查了集合的運算,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2+1.
(1)當(dāng)a=-1時,求函數(shù)f(x)的極值;
(2)當(dāng)a>0時,證明:存在正實數(shù)λ,使得|${\frac{1-x}{f(x)-lnx}}$|≤λ恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合{1,2}⊆A⊆{1,2,3,4,5},則滿足條件的集合A的個數(shù)是( 。
A.8B.7C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=x+$\frac{lnx}{x}$在x=1處的切線與兩坐標(biāo)軸圍成的三角形的面積為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1.
(1)求f(-$\frac{π}{24}$)的值.
(2)若x∈(0,π)求函數(shù)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知PA⊥平面ABC,BC⊥AC,則圖中直角三角形的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x>0,x(x-1)>0”的否定是( 。
A.?x>0,x(x-1)≤0B.?x<0,0≤x≤1C.?x>0,x(x-1)≤0D.?x>0,0≤x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{\sqrt{2-x}}$的定義域為( 。
A.{x|x<2}B.{x|x≤2}C.{x|x>2}D.{x|x≠2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么μ=22x-y+2的最大值為(  )
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案