已知數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)求的最大或最小值.
(1) (2) 或,此時(shí)有最小值,無最大值.
解析試題分析:(1) 根據(jù)已知求,可知利用,求出和,而后驗(yàn)證是否可以合為一個(gè)通項(xiàng)公式.
(2)根據(jù)可知,其是一個(gè)開口向上的二次函數(shù),其中.所以其無最大值,有最小值在對稱軸處取得,即時(shí).但是顯然,所以取離它最近的整數(shù)的值,從而得到的最小值.
(1)當(dāng)時(shí),,
當(dāng)時(shí),,
驗(yàn)證將帶入時(shí)的中可得,不成立,
所以數(shù)列的通項(xiàng)公式.
(2)根據(jù)可知,其是一個(gè)開口向上的二次函數(shù),其中.
所以無最大值,有最小值在對稱軸處取得,即時(shí),
顯然此時(shí),所以取離它最近的正整數(shù)的值,
即或,此時(shí)有最小值.
考點(diǎn):已知求,可知利用;將數(shù)列前項(xiàng)和當(dāng)做二次函數(shù)求最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
如右圖,將全體正整數(shù)排成一個(gè)三角形數(shù)陣:
按照以上排列的規(guī)律,第行()從左向右的第3個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)證明:數(shù)列是等比數(shù)列;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)若,求及數(shù)列的通項(xiàng)公式;
(2)若,問:是否存在實(shí)數(shù)使得對所有成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}滿足+=2n+1 ()
(1)求出,,的值;
(2)由(1)猜想出數(shù)列{}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•廣東)設(shè)b>0,數(shù)列{an}滿足a1=b,an=(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,2an≤bn+1+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,滿足,,,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上的最大值為
求數(shù)列的通項(xiàng)公式;
求證:對任何正整數(shù),都有;
設(shè)數(shù)列的前項(xiàng)和,求證:對任何正整數(shù),都有成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com