2.設(shè)集合U={1,2,3,4,5},集合A={1,2,3},則∁UA=( 。
A.{1,2,3}B.{4,5}C.{1,2,3,4,5}D.

分析 由集合的補(bǔ)集的定義,即由U中不屬于A的元素構(gòu)成的集合,即可得到所求.

解答 解:集合U={1,2,3,4,5},
集合A={1,2,3},
則∁UA={4,5}.
故選:B.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是補(bǔ)集的求法,運(yùn)用定義法解題是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an-1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2(-an+1),求數(shù)列{$\frac{1}{_{n}_{n+2}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,且f(3)=0,則不等式(x-1)f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-3,1)∪(3,+∞)C.(-∞,-3)∪(3,+∞)D.(-3,1]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-y+1<0,}&{\;}\\{2x-y-2>0,}&{\;}\\{3x-2y+4>0}&{\;}\\{\;}&{\;}\end{array}\right.$所表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則$\frac{y}{x}$的取值范圍為(1,$\frac{7}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A是B的充分不必要條件,C是B是必要不充分條件,¬A是D的充分不必要條件,則C是¬D的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某經(jīng)銷商從沿海城市水產(chǎn)養(yǎng)殖廠購(gòu)進(jìn)一批某海魚,隨機(jī)抽取50條作為樣本進(jìn)行統(tǒng)計(jì),按海魚重量(克)得到如圖的頻率分布直方圖:

(Ⅰ)若經(jīng)銷商購(gòu)進(jìn)這批海魚100千克,試估計(jì)這批海魚有多少條(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)根據(jù)市場(chǎng)行情,該海魚按重量可分為三個(gè)等級(jí),如下表:
等級(jí)一等品二等品三等品
重量(g)[165,185][155,165)[145,155)
若經(jīng)銷商以這50條海魚的樣本數(shù)據(jù)來估計(jì)這批海魚的總體數(shù)據(jù),視頻率為概率.現(xiàn)從這批海魚中隨機(jī)抽取3條,記抽到二等品的條數(shù)為X,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=$\frac{{e}^{x}}{x}$在區(qū)間[$\frac{1}{2}$,e]上的最小值是e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不等式x(1-2x)>0的解集為( 。
A.$(0,\frac{1}{2})$B.$(-∞,0)∪(\frac{1}{2},+∞)$C.RD.

查看答案和解析>>

同步練習(xí)冊(cè)答案