6.下列說法正確的是( 。
A.1弧度的圓心角所對(duì)的弧長等于半徑
B.大圓中1弧度的圓心角比小圓中1弧度的圓心角大
C.所有圓心角為1弧度的角所對(duì)的弧長都相等
D.用弧度表示的角都是正角

分析 根據(jù)弧度的定義與應(yīng)用,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷即可.

解答 解:對(duì)于A,根據(jù)弧度的定義知,“1弧度的圓心角所對(duì)的弧長等于半徑”,故A正確;
對(duì)于B,大圓中1弧度的圓心角與小圓中1弧度的圓心角相等,故B錯(cuò)誤;
對(duì)于C,所有圓心角為1弧度的角所對(duì)的弧長不一定相等,故C錯(cuò)誤;
對(duì)于D,用弧度表示的角也可以不是正角,故D錯(cuò)誤.
故選:A.

點(diǎn)評(píng) 本題考查了弧度的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若(z-1)2=-1,則z的值為(  )
A.1+iB.1±iC.2+iD.2±i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)z為復(fù)數(shù),D為滿足條件||z|-1|+|z|-1=0的點(diǎn)Z所構(gòu)成的圖形的邊界.
(1)若復(fù)數(shù)W=$\frac{1}{2}$z+1-2i(其中z∈D),試證明:表示復(fù)數(shù)W的點(diǎn)在某一圓上運(yùn)動(dòng),并寫出此圓的復(fù)數(shù)方程;
(2)若滿足條件|z+$\frac{1}{2}$|=|z-$\frac{3}{2}$i|的點(diǎn)所構(gòu)成的圖形D′與D有兩個(gè)公共點(diǎn)A,B,且OA,OB的傾斜角分別為α,β(O為原點(diǎn)),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列命題中是全稱命題且為真命題的序號(hào)為①③.
①圓有內(nèi)接正方形,②$\sqrt{3}>\sqrt{2}$,③指數(shù)函數(shù)都是單調(diào)函數(shù),④常數(shù)列都是等比數(shù)列,⑤兩個(gè)正數(shù)的算術(shù)平均數(shù)大于它們的幾何平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)10=a0+a1x+a2x2+…+a10x10(x≠-1,x≠0).求a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知AB為圓C的弦,C為圓心,且|$\overrightarrow{AB}$|=2,則$\overrightarrow{AB}$$•\overrightarrow{AC}$=( 。
A.-2B.2C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在同一平面內(nèi),∠AOB=150°,∠AOC=120°,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=3,|$\overrightarrow{OC}$|=4.
(1)試用$\overrightarrow{OB}$和$\overrightarrow{OC}$表示$\overrightarrow{OA}$;
(2)是否存在實(shí)數(shù)λ,使得$\overrightarrow{AD}$=$λ\overrightarrow{AC}$,$\overrightarrow{AC}$$•\overrightarrow{BD}$=0同時(shí)成立?若存在,求出λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在二項(xiàng)式(x+2)n的展開式中只有第4項(xiàng)的系數(shù)最大,求第3項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列說法中:
①任取x1,x2∈I(區(qū)間),當(dāng)x1<x2時(shí),f (x1)<f (x2),則y=f (x)在I上是增函數(shù);
②函數(shù)y=x2在R上是增函數(shù);
③函數(shù)y=$\left\{\begin{array}{l}{x+3,x≥0}\\{-{x}^{2},x<0}\end{array}\right.$在定義域上是增函數(shù);
④y=$\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
正確的序號(hào)為①③.

查看答案和解析>>

同步練習(xí)冊(cè)答案