【題目】已知p:方程表示雙曲線,q:表示焦點在x軸上的橢圓.
(1)若“p且q”是真命題,求實數(shù)m的取值范圍;
(2)若“p且q”是假命題,“p或q”是真命題,求實數(shù)m的取值范圍.
【答案】(1);(2)或
【解析】
(1)求出命題為真命題時的取值范圍,再根據(jù)“且”是真命題列不等式組,求出的取值范圍;(2)當“且”是假命題, “或”是真命題時, —真一假,分兩種情況討論,對于真假以及假真分別列不等式組,分別解不等式組,然后求并集即可求得實數(shù)的取值范圍..
(1)命題p:方程表示雙曲線,
則,解得;
命題q:表示焦點在軸上的橢圓,
則,解得2<m<6;
若“p且q”是真命題,則,解得2<m<6,
∴實數(shù)m的取值范圍是2<m<6;
(2)若“p且q”是假命題,“p或q”是真命題,
則p、q一真一假;
當p真q假時,,
解得1<m≤2;
當p假q真時,
解得4≤m<6;
綜上,實數(shù)m的取值范圍是1<m≤2或4≤m<6.
科目:高中數(shù)學 來源: 題型:
【題目】設a,b,c是△ABC的三邊,P: , Q:方程x2 +2ax+b2 = 0與方程x2 +2cx-b2 = 0有公共根. 則P是Q的_____.(填:充分不必要條件,必要而不充分條件,充要條件,既不充分也不必要條件)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對任意實數(shù)x,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)當a>0時,解關于x的不等式f(x)<2x﹣3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.
(1)求橢圓的方程;
(2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,
(1)若an>0,且a2a4+2a3a5+a4a6=25,求a3+a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(,﹣1),B(2,1),函數(shù)f(x)=log2x.
(1)過原點O作曲線y=f(x)的切線,求切線的方程;
(2)曲線y=f(x)(≤x≤2)上是否存在點P,使得過P的切線與直線AB平行?若存在,則求出點P的橫坐標,若不存在,則請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.
(1)若的面積是的面積的,求直線的方程;
(2)設直線與直線的斜率分別為,求證:為定值;
(3)若的延長線交直線于點,求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.
(1)若的面積是的面積的,求直線的方程;
(2)設直線與直線的斜率分別為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點E處鋪設一條直的灌溉水管EF,將綠地分成面積相等的兩部分.
(1)如圖①,若E為CD的中點,F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com