【題目】已知p:方程表示雙曲線,q:表示焦點在x軸上的橢圓.

(1)若“pq”是真命題,求實數(shù)m的取值范圍;

(2)若“pq”是假命題,“pq”是真命題,求實數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

(1)求出命題為真命題時的取值范圍再根據(jù)是真命題列不等式組,求出的取值范圍;(2)當(dāng)是假命題, “是真命題時,真一假,分兩種情況討論,對于假以及真分別列不等式組,分別解不等式組,然后求并集即可求得實數(shù)的取值范圍..

(1)命題p:方程表示雙曲線,

,解得;

命題q:表示焦點在軸上的橢圓

,解得2<m<6;

若“pq”是真命題,則,解得2<m<6,

實數(shù)m的取值范圍是2<m<6;

(2)若“pq”是假命題,“pq”是真命題,

p、q一真一假;

當(dāng)pq假時,,

解得1<m≤2;

當(dāng)pq真時,

解得4≤m<6;

綜上,實數(shù)m的取值范圍是1<m≤2或4≤m<6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c是△ABC的三邊,P: , Q:方程x2 +2ax+b2 = 0與方程x2 +2cx-b2 = 0有公共根. 則P是Q的_____.(填:充分不必要條件,必要而不充分條件,充要條件,既不充分也不必要條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對任意實數(shù)x,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a>0時,解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,
(1)若an>0,且a2a4+2a3a5a4a6=25,求a3a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(,﹣1),B(2,1),函數(shù)f(x)=log2x.

(1)過原點O作曲線y=f(x)的切線,求切線的方程;

(2)曲線y=f(x)(≤x≤2)上是否存在點P,使得過P的切線與直線AB平行?若存在,則求出點P的橫坐標(biāo),若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.

(1)若的面積是的面積的,求直線的方程;

(2)設(shè)直線與直線的斜率分別為,求證:為定值;

(3)若的延長線交直線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.

(1)若的面積是的面積的,求直線的方程;

(2)設(shè)直線與直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點,F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.

查看答案和解析>>

同步練習(xí)冊答案