已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)的圖象如圖所示,對于滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f(
x1+x2
2
)

f(x2)-f(x1)
x2-x1
>0.
其中正確結(jié)論的序號是
 
.(把所有正確結(jié)論的序號都填上)
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:利用直線的斜率的幾何意義,利用數(shù)形結(jié)合的思想研究函數(shù)的單調(diào)性與最值即可得到答案.
解答: 解:函數(shù)y=f(x)在區(qū)間[0,1]上的圖象如下:


對于①設曲線y=f(x)上兩點A(x1,f(x1)),B(x2,f(x2)),直線AB的斜率kAB=
f(x2)-f(x1)
x2-x1
<kop=1,
∴f(x2)-f(x1)<x2-x1,故①錯誤;
對于②,由圖可知,koA>koB,即
f(x1)
x1
f(x2)
x2
,0<x1<x2<1,于是有x2f(x1)>x1f(x2),故②正確;
對于③,由于函數(shù)f(x)為上凸函數(shù),根據(jù)凸函數(shù)的性質(zhì)可知
f(x1)+f(x2)
2
<f(
x1+x2
2
)
,故③正確,
對于④,由圖象可知函數(shù)為增函數(shù),所以
f(x2)-f(x1)
x2-x1
>0.故④正確
故答案:②③④
點評:本題考查函數(shù)的圖象,著重考查直線的斜率的幾何意義,考察函數(shù)的單調(diào)性,突出考查作圖象的能力與數(shù)形結(jié)合解決問題的能力,屬于中檔題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

長方形OABC各點的坐標如圖所示,D為OA的中點,由D點發(fā)出的一束光線,入射到邊AB上的點E處,經(jīng)AB、BC、CO一次反射后恰好經(jīng)過點A,則入射光線DE所在的直線斜率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是雙曲線
x2
16
-
y2
9
=1的左右焦點,A是雙曲線右支上的動點.
(1)若點M(5,1)求|AM|+|AF2|的最小值;
(2)若點M(5,n)求|AM|+|AF2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次考試中,5名同學數(shù)學、物理成績?nèi)绫硭荆?br />
學生ABCDE
數(shù)學(x分)8991939597
物理(y分)8789899293
(1)根據(jù)表中數(shù)據(jù),求物理分y對數(shù)學分x的回歸方程:
(2)要從4名數(shù)學成績在90分以上的同學中選出2名參加一項活動,以X表示選中的同學中物理成績高于90分的人數(shù),求隨機變量X的分布列及數(shù)學期望E(X).( 附:回歸方程
?
y
=
?
b
x+
?
a
中,
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差d不為0,且a1,a3,a7成等比數(shù)列,則
a1
d
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值
(1)[(3
3
8
)
-
2
3
-(5
4
9
)
0.5
+(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2
]÷0.062 50.25;
(2)2(lg
2
2+lg
2
•lg5+
lg
2
2
-lg2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U=A∪B={x|x∈N,x<10},A∩B={0,2,4},A∩(∁UB)={1,5,7},B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程
|x|
x+4
=kx2有3個不同的實數(shù)解,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下四個命題:
①若“P∨q”為真命題,則p,q均為假命題;
②“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”
③“?x∈R,x2+x≥1”的否定為“?x0∈R,x02+x0≤1”;
④“x>0”是“x+
1
x
≥2”的充要條件.
其中不正確的命題序號為
 

查看答案和解析>>

同步練習冊答案