分析 (1)通過(guò)討論x的范圍,去掉絕對(duì)值解關(guān)于x的不等式,求出不等式的解集即可;
(2)問(wèn)題等價(jià)于a≤f(x)-x,令g(x)=f(x)-x,求出g(x)的最小值,從而求出a的范圍即可.
解答 解:(1)當(dāng)t=2時(shí),f(x)=|x-1|+|x-2|,
若x≤1,則f(x)=3-2x,于是由f(x)>2,解得x<$\frac{1}{2}$,綜合得x<$\frac{1}{2}$;
若1<x<2,則f(x)=1,顯然f(x)>2不成立;
若x≥2,則f(x)=2x-3,于是由f(x)>2,解得x>$\frac{5}{2}$,綜合得x>$\frac{5}{2}$
∴不等式f(x)>2的解集為{x|x<$\frac{1}{2}$,或x>$\frac{5}{2}$}.
(2)f(x)≥a+x等價(jià)于a≤f(x)-x,令g(x)=f(x)-x,
當(dāng)-1≤x≤1時(shí),g(x)=1+t-3x,顯然g(x)min=g(1)=t-2,
當(dāng)1<x<t時(shí),g(x)=t-1-x,此時(shí)g(x)>g(1)=t-2,
當(dāng)t≤x≤3時(shí),g(x)=x-t-1,g(x)min=g(1)=t-2,
∴當(dāng)x∈[1,3]時(shí),g(x)min=t-2,
又∵t∈[1,2],
∴g(x)min≤-1,即a≤-1,
綜上,a的取值范圍是a≤-1.
點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查函數(shù)最值問(wèn)題,考查分類(lèi)討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\sqrt{2},\sqrt{2})$ | B. | $(0,\sqrt{2})$ | C. | $(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$ | D. | $(\frac{{\sqrt{6}}}{2},\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com