A. | 1 | B. | 3 | C. | $\frac{26}{5}$ | D. | -19 |
分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x+2y-2=0}\end{array}\right.$,解得A(-1,$\frac{3}{2}$),
化目標函數(shù)z=3x+4y為y=$-\frac{3}{4}x+\frac{z}{4}$,
由圖可知,當直線y=$-\frac{3}{4}x+\frac{z}{4}$過點A時,直線在y軸上的截距最小,z有最小值為3,
故選:B.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{10}$$\sqrt{2}$ | B. | -$\frac{7}{10}$$\sqrt{2}$ | C. | -$\frac{\sqrt{2}}{10}$ | D. | $\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | h(x)=f(x)+g(x) | B. | h(x)=f(x)•g(x) | C. | $h(x)=\frac{g(x)}{2-f(x)}$ | D. | $h(x)=\frac{f(x)}{2-g(x)}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ¬p:?x∈R,log3x≤0 | B. | ¬p:?x∈R,log3x≤0 | C. | ¬p:?x∈R,log3x<0 | D. | ¬p:?x∈R,log3x<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com