【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為

Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.

【答案】(1),為圓心,為半徑的圓.(2)

【解析】分析:Ⅰ)先利用得到的直角方程為,在利用得到的極坐標方程為

Ⅱ)直線過極點,因此,聯(lián)立直線的極坐標方程和曲線的極坐標方程,利用韋達定理得到,同理也能得到,這樣得到四邊形的面積表達式后就可以求面積的最大值

詳解:(Ⅰ)由為參數(shù))消去參數(shù)得:

將曲線的方程化成極坐標方程得:,

∴曲線是以為圓心,為半徑的圓.

Ⅱ)設(shè),由與圓聯(lián)立方程可得,

,

因為三點共線,則

①.

同理用代替可得,而,故,又,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,AB是圓Ox軸的兩個交點(點B在點A右側(cè)),點,x軸上方的動點P使直線,的斜率存在且依次成等差數(shù)列.

1)求證:動點P的橫坐標為定值;

2)設(shè)直線與圓O的另一個交點分別為S,T.求證:點QS,T三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當時,求的極大值點和極小值點;

(2)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于直線對稱的圓的標準方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,點C為半圓上一點,,平面ABC,DPA中點,.

1)求證:;

2)求直線BD與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學(xué)生進行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機抽取了100名學(xué)生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(1)請估計學(xué)生的跳繩個數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù))

(2)若從跳繩個數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求兩人得分之和不大于34分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為數(shù)列的前n項和,,當n≥2時,,又

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列落在區(qū)間內(nèi)的項數(shù)為,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的零點之和;

2)已知,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊答案