(本小題滿分13分)已知
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若對任意
恒成立,求實數(shù)a的取值范圍.
解:(1)
令
∴
∴
由于
的定義域為
,
∴
在
單調(diào)遞減,在
單調(diào)遞增··············································· 6分
(2)
,由于
當(dāng)x = 1時,
∴
·························································································· 13分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
(a、b、c、d∈R)滿足:對于任意的
都有f(x)+f(-x)=0,且x=1時f(x)取極小值
.
(1)f(x)的解析式;
(2)當(dāng)
時,證明:函數(shù)圖象上
任意兩點處的切線不可能互相垂直:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,已知曲線
與曲線
交于點
.直線
與曲線
分別相交于點
.
(Ⅰ)寫出四邊形
的面
積
與
的函數(shù)關(guān)系
;
(Ⅱ)討論
的單調(diào)性,并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù):
.
(1)證明:
+
+2=0對定義域內(nèi)的所有
都成立;
(2)當(dāng)
的定義域為[
+
,
+1]時,求證:
的值域為[-3,
-2];
(3)若
,函數(shù)
=x
2+|(x-
)
| ,求
的最小值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
)(
為自然對數(shù)的底數(shù))
(1)求
的極值
(2)對于數(shù)列
,
(
)
① 證明:
② 考察關(guān)于正整數(shù)
的方程
是否有解,并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知函數(shù)
,
,
若函數(shù)
在(0,4)上為單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在
上的最大值為1,求a的取值范圍( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)若
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍; (2)若
是
的極值點,求
在
上的最大值;(3)在(2)的條件下,是否存在實數(shù)
,使得函數(shù)
的圖像與函數(shù)
的圖象恰有3個交點?若存在,請求出實數(shù)
的取值范圍;若不存在,試說明理由。
查看答案和解析>>