【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
【答案】(Ⅰ)最小值為,最大值為;(Ⅱ)答案見解析.
【解析】試題分析:(1)當(dāng)時(shí), ,根據(jù)二次函數(shù)的性質(zhì)能求出在上的最大值和最小值;(2)當(dāng)時(shí),原不等式等價(jià)于,當(dāng)時(shí),原不等式等價(jià)于,由此根據(jù)一元二次不等式的解法能求出當(dāng)時(shí),不等式的解集為或,當(dāng)時(shí),不等式的的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.
試題解析:()當(dāng)時(shí), ,
∴函數(shù)在上是減函數(shù),在上是增函數(shù),
∴在上的最小值為,
又, , ,
∴在上的最大值為.
()(i)當(dāng)時(shí),原不等式等價(jià)于,
∵,
∴,
此時(shí)的解集為或.
(ii)當(dāng)時(shí),原不等式等價(jià)于,
由,得:
①若,則,此時(shí)的解集為;
②當(dāng),原不等式無解;
③當(dāng),則,此時(shí), 的解集為,
綜上,當(dāng)時(shí),不等式的解集為或,
當(dāng)時(shí),不等式的解集為,
當(dāng)時(shí),不等式的解集為,
當(dāng)時(shí),不等式的解集為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 ( 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出圓 的直角坐標(biāo)方程;
(2) 為直線 上一動點(diǎn),當(dāng) 到圓心 的距離最小時(shí),求 的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請直接寫出數(shù)列的通項(xiàng)公式;
(3)記,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中, 平面 , , , , , , , 是 的中點(diǎn).
(1)求證: 平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ( 為自然對數(shù)的底數(shù)).
(1)設(shè)曲線 在 處的切線為 ,若 與點(diǎn) 的距離為 ,求 的值;
(2)若對于任意實(shí)數(shù) , 恒成立,試確定 的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 在 上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù),
(1)求, ,
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)已知該廠技動前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
已知, .
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若a2+c2+ ac=b2 , sinA= .
(1)求sinC的值;
(2)若a=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)不為零的數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比數(shù)列,求實(shí)數(shù)p的值;
(2)若a1 , a2 , a3成等差數(shù)列,
①求數(shù)列{an}的通項(xiàng)公式;
②在an與an+1間插入n個(gè)正數(shù),共同組成公比為qn的等比數(shù)列,若不等式(qn)(n+1)(n+a)≤e對任意的n∈N*恒成立,求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商城在2017年前7個(gè)月的銷售額 (單位:萬元)的數(shù)據(jù)如下表,已知與具有較好的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)分析該淘寶商城2017年前7個(gè)月的銷售額的變化情況,并預(yù)測該商城8月份的銷售額.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com