【題目】某淘寶商城在2017年前7個(gè)月的銷售額 (單位:萬元)的數(shù)據(jù)如下表,已知與具有較好的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)分析該淘寶商城2017年前7個(gè)月的銷售額的變化情況,并預(yù)測(cè)該商城8月份的銷售額.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
, .
【答案】(1).(2)126萬元.
【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù),利用最小二乘法可得橫標(biāo)和縱標(biāo)的平均數(shù),橫標(biāo)和縱標(biāo)的積的和,與橫標(biāo)的平方和,代入公式求出的值,再求出的值,寫出線性回歸方程.
(2)根據(jù)(1)求出的線性回歸方程,代入所給的的值,預(yù)測(cè)預(yù)測(cè)該商城8月份的銷售額..
試題解析:(1)由所給數(shù)據(jù)計(jì)算得,
,
,
, .
所求回歸方程為.
(2)由(1)知, ,故前7個(gè)月該淘寶商城月銷售量逐月增加,平均每月增加10萬.
將,代入(1)中的回歸方程, .
故預(yù)測(cè)該商城8月份的銷售額為126萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(I)求 的單調(diào)區(qū)間;
(II)若對(duì)任意的 ,都有 ,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究函數(shù)f(x)= 的性質(zhì),完成下面兩個(gè)問題:
①將f(2),f(3),f(5)按從小到大排列為;
②函數(shù)g(x)= (x> 0)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)動(dòng)直線 與橢圓 相切,切點(diǎn)為 ,且 與直線 相交于點(diǎn) .
試問:在 軸上是否存在一定點(diǎn),使得以 為直徑的圓恒過該定點(diǎn)?若存在,
求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點(diǎn), .
(Ⅰ)求證 ∥平面 ;
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,且經(jīng)過點(diǎn) 是橢圓的左、右焦點(diǎn).
(1)求橢圓 的方程;
(2)點(diǎn) 在橢圓上運(yùn)動(dòng),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)a=2時(shí),若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com