4.設(shè)點(diǎn)P(1,-1)到直線(m+1)x+(2m-1)y-1-4m=0(m∈R)的距離為d,則d的取值范圍為( 。
A.[0,1)B.[0,1]C.[0,$\sqrt{5}$)D.[0,$\sqrt{5}$]

分析 先確定直線恒過定點(diǎn),再計(jì)算|PQ|,從而可得結(jié)論.

解答 解:直線(m+1)x+(2m-1)y-1-4m=0化為m(x+2y-4)+x-y-1=0,點(diǎn)P(1,-1)
聯(lián)立$\left\{\begin{array}{l}{x+2y-4=0}\\{x-y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.
∴直線l過定點(diǎn)Q(2,1),
∴d的最大值為點(diǎn)P、Q的距離,
∵點(diǎn)P、Q的距離為$\sqrt{(2-1)^{2}+(1+1)^{2}}$=$\sqrt{5}$,
由d=$\sqrt{5}$→PQ⊥l,且PQ斜率為2
→直線l的斜率為-$\frac{1}{2}$
而直線l的斜率為-$\frac{m+1}{2m+1}$$≠-\frac{1}{2}$
二者矛盾,也就是說,d≠$\sqrt{5}$
故d的取值范圍是[0,$\sqrt{5}$).
故選:D.

點(diǎn)評(píng) 本題考查了直線系的應(yīng)用、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解一元二次不等式
(1)-x2-2x+3>0
(2)x2-3x+5>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.假設(shè)有兩個(gè)分類變量X和Y的2×2列聯(lián)表為:
X
Y
y1y2總計(jì)
x15b5+b
x215d15+d
總計(jì)204060
對(duì)同一樣本,以下數(shù)據(jù)能說明X與Y有關(guān)系的可能性最大的一組為( 。
A.b=5,d=35B.b=15,d=25C.b=20,d=20D.b=30,d=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,焦距為2$\sqrt{3}$.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 過橢圓C的左頂點(diǎn)B且互相垂直的兩直線l1,l2分別交橢圓C于點(diǎn)M,N(點(diǎn)M,N均異于點(diǎn)B),試問直線MN是否過定點(diǎn),若過定點(diǎn)?求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.3(π+1)B.4π+1C.π+$\frac{8}{3}$D.2π+$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.三棱錐S-ABC中,已知△ABC是以角A為直角的等腰三角形,AB=2,SB=SC=$\sqrt{3}$,SO⊥BC,垂足為O.
(1)證明:SA⊥BC;
(2)若側(cè)面SBC⊥底面ABC,求OS與平面ASB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知四點(diǎn)A(12,0),B(-4,0),C(0,-3),D(-3,-4),把坐標(biāo)系平面沿y軸折為直二面角.

(Ⅰ)求證:BC⊥AD;
(Ⅱ)求平面ADO和平面ADC的夾角的余弦值;
(Ⅲ)求三棱錐C-AOD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有一幅圖畫掛在墻上,它的下方在觀察者眼睛上方a米處,它的上方在觀察者眼睛上方b米處.觀察者離此畫$\sqrt{ab}$米才能使得視角最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在區(qū)間(0,+∞)不是單調(diào)遞增函數(shù)的是( 。
A.y=3x-1B.y=$\frac{2}{x}$C.y=3x2+1D.y=x2+2x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案