15.假設(shè)有兩個分類變量X和Y的2×2列聯(lián)表為:
X
Y
y1y2總計
x15b5+b
x215d15+d
總計204060
對同一樣本,以下數(shù)據(jù)能說明X與Y有關(guān)系的可能性最大的一組為(  )
A.b=5,d=35B.b=15,d=25C.b=20,d=20D.b=30,d=10

分析 當(dāng)ad與bc差距越大,兩個變量有關(guān)的可能性就越大,檢驗四個選項中所給的ad與bc的差距,即可得出結(jié)果.

解答 解:根據(jù)觀測值求解的公式K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$可知,
當(dāng)ad與bc差距越大,兩個變量有關(guān)的可能性就越大,
選項A中,|ad-bc|=100,選項B中,|ad-bc|=100,
選項C中,|ad-bc|=200,選項D中,|ad-bc|=400,
故選:D.

點評 本題考查獨立性檢驗,得出ad與bc差距越大,兩個變量有關(guān)的可能性就越大是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一臺機器生產(chǎn)某種產(chǎn)品,如果生產(chǎn)出一件甲等品可獲利50元,生產(chǎn)出一件乙等品可獲利30元,生產(chǎn)出一件次品,要賠20元,已知這臺機器生產(chǎn)出甲等品、乙等品和次品的概率分別為0.6,0.3和0.1,則這臺機器每生產(chǎn)一件產(chǎn)品平均預(yù)期可獲利37元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們可以利用數(shù)列{an}的遞推公式an=$\left\{\begin{array}{l}n,n為奇數(shù)時\\{a_{\frac{n}{2}}},n為偶數(shù)時\end{array}\right.$(n∈N*)求出這個數(shù)列各項的值,使得這個數(shù)列中的每一項都是奇數(shù),則a48+a49=52;研究發(fā)現(xiàn),該數(shù)列中的奇數(shù)都會重復(fù)出現(xiàn),那么第九個5是該數(shù)列的第1280項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)是定義在R上的奇函數(shù),當(dāng)x∈[0,+∞)時,有xf′(x)>f(-x)恒成立,則滿足3f(3)>(2x-1)f(2x-1)的實數(shù)x的取值范圍是( 。
A.(-1,$\frac{1}{2}$)B.(-1,2)C.($\frac{1}{2}$,2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,圓C的方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)把直線l化為直角坐標(biāo)方程和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
(1)函數(shù)y=f(x)在區(qū)間(3,5)內(nèi)單調(diào)遞增;
(2)函數(shù)y=f(x)在區(qū)間(-$\frac{1}{2}$,3)內(nèi)單調(diào)遞減;
(3)函數(shù)y=f(x)在區(qū)間(-3,2)內(nèi)單調(diào)遞增;
(4)當(dāng)x=-$\frac{1}{2}$時,函數(shù)y=f(x)有極大值;
(5)當(dāng)x=2時,函數(shù)y=f(x)有極小值.
則上述判斷中正確的序號是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1有相同的( 。
A.離心率B.焦距C.長軸長D.焦點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)點P(1,-1)到直線(m+1)x+(2m-1)y-1-4m=0(m∈R)的距離為d,則d的取值范圍為( 。
A.[0,1)B.[0,1]C.[0,$\sqrt{5}$)D.[0,$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a+b=(lg2)3+(lg5)3+3lg2•lg5,則3ab+a3+b3=1.

查看答案和解析>>

同步練習(xí)冊答案