已知數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令(),如果對任意,都有,求實數(shù)的取值范圍.
(1);(2)是以為首相為公比的等比數(shù)列;
(3)
解析試題分析:(1)利用賦值法,令可求;
(2)將等式寫到,再將得到的式子與已知等式聯(lián)立,兩式再相減,根據(jù)等比數(shù)列的定,可證明是以為首相為公比的等比數(shù)列;
(3)由(2)可寫出,利用數(shù)列的單調(diào)性當時,,當時,,因此,數(shù)列的最大值為,則可解的的范圍.
試題解析:(1)
(2)由題可知: ①
②
②-①可得 即:,又
∴數(shù)列是以為首項,以為公比的等比數(shù)列
(3)由(2)可得,
由可得
由可得,所以
故有最大值
所以,對任意,有
如果對任意,都有,即成立,
則,故有:,解得或
∴實數(shù)的取值范圍是
考點:1、賦值法求值;2、等比數(shù)列的定義;3、方程思想;4、數(shù)列的單調(diào)性、最值;5、恒成立問題、不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=3x+1上,n∈N*.
(1)當實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log4an+1,cn=an+bn,Tn是數(shù)列{cn}的前n項和,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log3an+1,Tn是數(shù)列的前n項和, 求T2 013的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的首項為(),前項和為,且().設(shè),().
(1)求數(shù)列的通項公式;
(2)當時,若對任意,恒成立,求的取值范圍;
(3)當時,試求三個正數(shù),,的一組值,使得為等比數(shù)列,且,,成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)證明: ()的充分必要條件為;
(Ⅲ)若對于任意不超過的正整數(shù)n,都有,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(1,)是函數(shù)且)的圖象上一點,等比數(shù)列的前項和為,數(shù)列的首項為,且前項和滿足-=+().
(1)求數(shù)列和的通項公式;
(2)求數(shù)列{前項和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列的前項和為,若不等式對一切恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com