13.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(4,y),若$\overrightarrow{a}$⊥$\overrightarrow$,則點P(x,y)到原點的距離的最小值為$\frac{2\sqrt{5}}{5}$.

分析 根據(jù)向量垂直于向量數(shù)量積的關系建立方程,利用點到直線的距離公式進行求解即可.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=0,
即4(x-1)+2y=0,
即2x+y-2=0,
則點P(x,y)到原點的距離的最小值為當P垂直直線時取得最小值,
此時最小值為d=$\frac{|-2|}{\sqrt{{2}^{2}+1}}=\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故答案為:$\frac{2\sqrt{5}}{5}$.

點評 本題主要考查向量數(shù)量積的應用以及點到直線的距離公式的計算,根據(jù)向量垂直轉化向量數(shù)量積是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.某城區(qū)有農民、工人、知識分子家庭共計2 000戶,其中農民家庭1 800戶,工人家庭100戶.現(xiàn)要從中抽取容量為40的樣本調查家庭收入情況,則在整個抽樣過程中,可以用到的抽樣方法的是.(填序號)①②③
①簡單隨機抽樣;②系統(tǒng)抽樣;③分層抽樣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為$4(\sqrt{2}+1)$.一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)探究$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$是否是個定值,若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,若a=1,c=$\sqrt{3},C=\frac{2π}{3}$,則A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(I)求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)有兩個零點x1,x2,試判斷f(x1x2)與a+1的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知y=f(x)是定義在R上的函數(shù),且f(2)=5,對任意的x都有f′(x)<$\frac{1}{2}$.則f(x)<$\frac{1}{2}$x+4的解集是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)求證:$\sqrt{3}+\sqrt{7}<2\sqrt{5}$.
(2)在數(shù)列{an}中,${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,試猜想這個數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)$y=cos(\frac{π}{4}-\frac{x}{3})$的最小正周期是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.A、B、C是平面上不共線的三點,O為△ABC的中心,D是AB的中點,動點P滿足$\overrightarrow{OP}$=$\frac{1}{3}$[(2-2λ)$\overrightarrow{OD}$+(1+2λ)$\overrightarrow{OC}$](λ∈R),則點P的軌跡一定過△ABC的( 。
A.內心B.外心C.垂心D.重心

查看答案和解析>>

同步練習冊答案