【題目】已知函數(shù),存在,使得函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
f′(x)=aex﹣lnx﹣1,根據(jù)存在n∈N,使得函數(shù)f(x)在區(qū)間(n,n+2)上有兩個(gè)極值點(diǎn),可得方程f′(x)=0必有兩個(gè)不等根,等價(jià)于a在區(qū)間(n,n+2)上有兩個(gè)不等根,等價(jià)于函數(shù)y=a與g(x)在區(qū)間(n,n+2)上有兩個(gè)不同的交點(diǎn).利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
f′(x)=aex﹣lnx﹣1,∵存在n∈N,使得函數(shù)f(x)在區(qū)間(n,n+2)上有兩個(gè)極值點(diǎn),
∴方程f′(x)=0必有兩個(gè)不等根,等價(jià)于a在區(qū)間(n,n+2)上有兩個(gè)不等根,
等價(jià)于函數(shù)y=a與g(x)在區(qū)間(n,n+2)上有兩個(gè)不同的交點(diǎn).
g′(x),
令h(x)=1﹣x(lnx+1),h′(x)=﹣(lnx+2).
可得x∈(0,e﹣2)時(shí),h′(x)>0;x∈(e﹣2,+∞)時(shí),h′(x)<0.
∴x=e﹣2時(shí),函數(shù)h(x)取得極大值h(e﹣2)=1+e﹣2.
又h(1)=0,x→0+時(shí),h(x)→1.
∴取n=0,區(qū)間為(0,2).
g′(1)=0.
x∈(0,1)時(shí),函數(shù)g(x)單調(diào)遞增;x∈(1,2)時(shí),函數(shù)g(x)單調(diào)遞減.
∴x=1時(shí),函數(shù)g(x)取得極大值即最大值,g(1).
x→0+時(shí),g(x)→﹣∞;x=2時(shí),g(2).
∴實(shí)數(shù)a的取值范圍是.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從4名書法比賽一等獎(jiǎng)的同學(xué)和2名繪畫比賽一等獎(jiǎng)的同學(xué)中選出2名志愿者,參加某項(xiàng)服務(wù)工作.
(1)求選出的兩名志愿者都是獲得書法比賽一等獎(jiǎng)的同學(xué)的概率;
(2)求選出的兩名志愿者中一名是獲得書法比賽一等獎(jiǎng),另一名是獲得繪畫比賽一等獎(jiǎng)的同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為4,離心率為,斜率不為0的直線l與橢圓恒交于A,B兩點(diǎn),且以AB為直徑的圓過橢圓的右頂點(diǎn)M.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l是否過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=﹣1和x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[﹣2,6]時(shí),f(x)<2|c|恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系O﹣xyz中,已知正四棱錐P﹣ABCD的所有棱長(zhǎng)均為6,底面正方形ABCD的中心在坐標(biāo)原點(diǎn),棱AD,BC平行于x軸,AB,CD平行于y軸,頂點(diǎn)P在z軸的正半軸上,點(diǎn)M,N分別在線段PA,BD上,且.
(1)求直線MN與PC所成角的大。
(2)求銳二面角A﹣PN﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計(jì)劃在甲、乙兩個(gè)互聯(lián)網(wǎng)創(chuàng)新項(xiàng)目上共投資1200萬(wàn)元,每個(gè)項(xiàng)目至少要投資300萬(wàn)元.根據(jù)市場(chǎng)分析預(yù)測(cè):甲項(xiàng)目的收益與投入滿足,乙項(xiàng)目的收益與投入滿足.設(shè)甲項(xiàng)目的投入為.
(1)求兩個(gè)項(xiàng)目的總收益關(guān)于的函數(shù).
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬(wàn)元”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , , 與均為等邊三角形,點(diǎn)為的中點(diǎn).
(1)證明:平面平面;
(2)試問在線段上是否存在點(diǎn),使二面角的余弦值為,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:,直線l:.
當(dāng)時(shí),若圓C與直線l交于A,B兩點(diǎn),過點(diǎn)A,B分別作l的垂線與y軸交于D,E兩點(diǎn),求的值;
過直線l上的任意一點(diǎn)P作圓的切線為切點(diǎn),若平面上總存在定點(diǎn)N,使得,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com