分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,只需求出直線z=x+2y過點(diǎn)A(0,3)時(shí),z最大值即可.
解答 解:根據(jù)約束條件$\left\{\begin{array}{l}{x+y≤2}\\{y≤x}\end{array}\right.$,畫出可行域如圖:
直線z=x+2y過點(diǎn)A時(shí),z最大值,
由$\left\{\begin{array}{l}{x+y=2}\\{y=x}\end{array}\right.$,解得A(1,1).
即目標(biāo)函數(shù)z=x+2y的最大值為3,
故答案為:3.
點(diǎn)評(píng) 本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-$\frac{1}{2}$ | B. | 1或-2 | C. | -1或-2 | D. | -2或-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{8π}{3}$ | D. | $\frac{16π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com