9.-510°是第三象限角.

分析 把角寫(xiě)成k×360°+α,0°≤α<360°,k∈z 的形式,根據(jù)α的終邊位置,做出判斷.

解答 解:∵-510°=-2×360°+210°,
∴-510°與210°終邊相同,故角-510°在第三象限,
故答案為:三

點(diǎn)評(píng) 本題主要考查終邊相同的角的定義和表示方法,象限角、象限界角的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$+$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$=$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$,則四邊形ABCD的面積為(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知函數(shù)f(x)=ex+m-lnx,若x=1是函數(shù)f(x)的極值點(diǎn),求m的值,并討論f(x)的單調(diào)性;
(2)已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈[-2,0],使得f(x2)≤g(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列冪函數(shù)中過(guò)點(diǎn)(0,0),(1,1)的奇函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x5C.y=x-3D.y=x${\;}^{-\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2=b2+c2-bc,則∠A=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1且垂直于x軸的直線交雙曲線C于P、Q兩點(diǎn),若△F2PQ為正三角形,則雙曲線C的離心率e的值為( 。
A.$\sqrt{3}$B.2C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.給出下列命題:
①存在實(shí)數(shù)x,使$sinx+cosx=\frac{3}{2}$;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)$y=sin(2x+\frac{π}{4})$的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),當(dāng)0≤x≤1時(shí),f(x)=2x,
則f(2015)=-2.
其中正確命題是④(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象關(guān)于直線$x=\frac{π}{32}$對(duì)稱且$f({-\frac{π}{32}})=0$,如果存在實(shí)數(shù)x0,使得對(duì)任意的x都有$f({x_0})≤f(x)≤f({{x_0}+\frac{π}{8}})$,則ω的最小值是(  )
A.4B.6C.8D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案