4.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8-2πB.8-$\frac{3}{4}$πC.8-$\frac{2}{3}$πD.8-$\frac{π}{2}$

分析 由題意,幾何體是棱長為2的正方體減半個圓柱,圓柱的底面半徑為2,高為1,即可求出幾何體的體積.

解答 :由題意,幾何體是棱長為2的正方體減半個圓柱,圓柱的底面半徑為2,高為1.
∴幾何體的體積為${2}^{3}-\frac{1}{2}•π•{1}^{2}•1$=8-$\frac{π}{2}$,
故選:D.

點評 本題考查幾何體的體積,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實數(shù)a,b,c∈(0,1),設(shè)$\frac{2}{a}$+$\frac{1}{1-b}$,$\frac{2}$+$\frac{1}{1-c}$,$\frac{2}{c}$+$\frac{1}{1-a}$這三個數(shù)的最大值為M,則M的最小值為(  )
A.5B.3+2$\sqrt{2}$C.3-2$\sqrt{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.Rt△ABC中,∠C為直角,CD為斜邊上的高h(yuǎn),角A、B、C的對邊分別為a,b,c,與Rt△ABC相對應(yīng)的是直角三棱錐P-ABC,即在頂點P處構(gòu)成3個直二面角.三條側(cè)棱長分別為PA=a,PB=b,PC=c,高PO=h,四面體P-ABC的面△PAB,△PAC,△PBC的面積分別為s1,s2,s3,底面△ABC的面積為s.
(1)在直角三角形ABC中有結(jié)論$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$,由此猜想四面體P-ABC中的結(jié)論:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;
在直角三角形ABC中有勾股定理c2=a2+b2,類比直角三角形的勾股定理,猜想,在四面體P-ABC中有:$s_1^2+s_2^2+s_3^2={s^2}$成立.
(2)上述猜想都是正確的嗎?試證明第二個猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x-y的最大值為(  )
A.$\frac{1}{2}$B.1C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為( 。
A.8cm3B.4cm3C.$\frac{8}{3}$cm3D.2cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,是我國古代軍隊用于屯糧的糧倉的三視圖,糧倉的底部建在地面上,圖中數(shù)據(jù)單位:m,cosα=$\frac{1}{6}$,cosβ=$\frac{3}{4}$,則該糧倉的側(cè)面積為( 。
A.$\frac{21π}{2}$m2B.$\frac{23π}{2}$m2C.12πm2D.$\frac{25π}{2}$m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2msin2x-(2$\sqrt{3}$)msinx•cosx+n(m>0)的定義域為[0,$\frac{π}{2}$],值域為[-5,4],試求函數(shù)g(x)=msin(x+10°)+2ncos(x+40°)(x∈R)的最小正周期T和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系中,銳角α,β的終邊分別與單位圓交于A,B兩點.
(1)如果點A的縱坐標(biāo)為$\frac{3}{5}$,點B的橫坐標(biāo)為$\frac{5}{13}$,求cos(α-β);
(2)已知點C(2$\sqrt{3}$,-2),$\overrightarrow{OA}•\overrightarrow{OC}$=2,求α

查看答案和解析>>

同步練習(xí)冊答案