9.運行如圖所示的程序框圖,則輸出的結(jié)果S為( 。
A.-1B.1C.-2D.2

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的n,S的值,觀察規(guī)律可知S的值以6為周期循環(huán),從而可求S的值.

解答 解:模擬執(zhí)行程序框圖,可知:
n=1,S=$\frac{1}{2}$;
滿足條件n<2015,執(zhí)行循環(huán)體,n=2,S=0;
滿足條件n<2015,執(zhí)行循環(huán)體,n=3,S=-1;
滿足條件n<2015,執(zhí)行循環(huán)體,n=4,S=-$\frac{3}{2}$;
滿足條件n<2015,執(zhí)行循環(huán)體,n=5,S=-1;
滿足條件n<2015,執(zhí)行循環(huán)體,n=6,S=0;
滿足條件n<2015,執(zhí)行循環(huán)體,n=7,S=$\frac{1}{2}$;
滿足條件n<2015,執(zhí)行循環(huán)體,n=8,S=0;
滿足條件n<2015,執(zhí)行循環(huán)體,n=9,S=-1

觀察規(guī)律可知,S的值以6為周期循環(huán),而2015=335×6+5,
所以S=-1.
故選:A.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,考查了余弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知一個扇形的周長為l,則扇形的面積最大值為$\frac{{l}^{2}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(3-a)x-2+a-2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調(diào),求a的取值范圍;
(2)若函數(shù)g(x)=f(x)-x在(0,$\frac{1}{2}$)上無零點,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(n)=log(n+1)(n+2)(n∈N*),定義使f(1)•f(2)•f(3)…f(k)為整數(shù)的k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2016]內(nèi)的企盼數(shù)的個數(shù)為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸出的s=86,則判斷框內(nèi)的正整數(shù)n的所有可能的值為( 。
A.7B.6,7C.6,7,8D.8,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinx•cosx
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,滿足c=$\sqrt{3}$,f(C)=$\frac{3}{2}$,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y滿足不等式組$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\end{array}\right.$,則z=mx+y(m>1)的最大值與最小值的比值為2,給出下列說法:
①點(1,1)是目標(biāo)函數(shù)取得最小值時的最優(yōu)解;
②點(2,0)是目標(biāo)函數(shù)取得最大值時的最優(yōu)解;
③m的取值只能取2;
④m的取值可以有無數(shù)個.
其中正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點A(0,2),點P(x,y)坐標(biāo)的(x,y)滿足$\left\{\begin{array}{l}x-y-8≤0\\ x+y-14≤0\\ x≥6\end{array}\right.$,則z=S三角形OAP(O是坐標(biāo)原點)的最值的最優(yōu)解是( 。
A.最小值有無數(shù)個最優(yōu)解,最大值只有一個最優(yōu)解
B.最大值、最小值都有無數(shù)個最優(yōu)解
C.最大值有無數(shù)個最優(yōu)解,最小值只有一個最優(yōu)解
D.最大值、最小值都只有一個最優(yōu)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知線段AB的兩端點A、B分別在x軸、y軸上滑動,|AB|=3,動點P滿足$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$;
(1)求動點P的軌跡C的方程;
(2)已知點N($\sqrt{3}$,0),試探究是否存在直線l:x=my-$\sqrt{3}$與軌跡C交于D、E兩點,且使得△DEN的內(nèi)切圓的面積為$\frac{3π}{16}$?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案