1.已知x,y滿足不等式組$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\end{array}\right.$,則z=mx+y(m>1)的最大值與最小值的比值為2,給出下列說法:
①點(diǎn)(1,1)是目標(biāo)函數(shù)取得最小值時(shí)的最優(yōu)解;
②點(diǎn)(2,0)是目標(biāo)函數(shù)取得最大值時(shí)的最優(yōu)解;
③m的取值只能取2;
④m的取值可以有無數(shù)個.
其中正確的個數(shù)為( 。
A.0B.1C.2D.3

分析 題處理的思路為:根據(jù)已知的約束條件 畫出滿足約束條件的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最值,分別判斷即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由于目標(biāo)函數(shù)對應(yīng)的直線z=mx+y的斜率-m小于直線x+y=2的斜率,
∴經(jīng)過點(diǎn)A(2,2)時(shí),z取得最大值2m+2,
當(dāng)直線過B(1,1)時(shí),z取得最小值m+1,
∴只要m>1,它們的比值是2,
故①④正確,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是線性規(guī)劃,考查畫不等式組表示的可行域,考查數(shù)形結(jié)合求目標(biāo)函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求角A;
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=4x的焦點(diǎn)為F,點(diǎn)M(m,0)在x軸的正半軸上且不與點(diǎn)F重合,若拋物線上的點(diǎn)滿足$\overrightarrow{FA}$•$\overrightarrow{MA}$=0,且這樣的點(diǎn)A只有兩個,則m滿足( 。
A.m=9B.m>9或0<m<1C.m>9D.0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果S為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在如圖所示的幾何體中,已知△BCD是等腰直角三角形且BD=CD,AB=BC=AC=2,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC.
(1)證明:AE∥平面BCD;
(2)證明:CD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.α,β為兩個不同的平面,l,m,n為三條不同的直線,且l,m?α,n?β,則下列命題正確的是( 。
A.若l∥β,m∥β,則α∥βB.若n⊥l,n⊥m,則n⊥αC.若n∥l,n∥m,則n∥αD.若l⊥β,m∥n,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若f(x)為偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=$\left\{{\begin{array}{l}{sin\frac{π}{2}x({0≤x≤1})}\\{{x^2}+lnx({x>1})}\end{array}}$,則不等式f(x-1)<1的解集為( 。
A.{x|0<x<2}B.{x|-1<x<1}C.{x|0<x<1}D.{x|-2<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|log3x≥0},B={x|x≤1},則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AD,BC上,且DE=2AE,CF=2BF.若有λ∈(7,16),則在正方形的四條邊上,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立的點(diǎn)P有( 。﹤.
A.2B.4C.6D.0

查看答案和解析>>

同步練習(xí)冊答案