【題目】已知復(fù)數(shù) z a bi ,其中 a .b 為實(shí)數(shù),i 為虛數(shù)單位, 為 z 的共軛復(fù)數(shù),且存在非零實(shí)數(shù) t ,使成立.
(1)求 2a b 的值;
(2)若| z 2 | 5,求實(shí)數(shù) a 的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒有減少的概率為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,若a1=﹣2,an+1=an+n2n,則an=( 。
A. (n﹣2)2nB. 1﹣C. (1﹣)D. (1﹣)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì) n N ,設(shè)拋物線 y2 2(2n 1) x ,過 P 2n, 0 任作直線 l 與拋物線交與 An, Bn兩點(diǎn),則數(shù)列的前 n 項(xiàng)和為_____;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓 C : ,稱圓心在原點(diǎn),半徑為的圓是橢圓 C 的“伴隨圓”.若橢圓 C 的一個(gè)焦點(diǎn)為 F1(, 0) ,其短軸上的一個(gè)端點(diǎn)到 F1 的距離為
(1)求橢圓 C 的方程及其“伴隨圓”方程;
(2)若傾斜角 45°的直線 l 與橢圓 C 只有一個(gè)公共點(diǎn),且與橢圓 C 的伴隨圓相交于 M .N 兩點(diǎn),求弦 MN 的的長(zhǎng);
(3)點(diǎn) P 是橢圓 C 的伴隨圓上一個(gè)動(dòng)點(diǎn),過點(diǎn) P 作直線 l1、l2,使得 l1、l2與橢圓 C 都只有一個(gè)公共點(diǎn),判斷l1、l2的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球、兩個(gè)“”號(hào)球、三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球、五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒有獎(jiǎng)金.
(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額服從正態(tài)分布,某天有為顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù);
(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列;
(Ⅲ)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),請(qǐng)問:這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一塊直角三角形板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中,陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點(diǎn)的任一直線將三角板鋸成,設(shè)直線的斜率為.
(1)用表示出直線的方程,并求出點(diǎn)的坐標(biāo);
(2)求出的取值范圍及其所對(duì)應(yīng)的傾斜角的范圍;
(3)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),且與定直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過點(diǎn)的任一條直線與軌跡交于不同的兩點(diǎn),試探究在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com