15.如圖,平面PAC⊥平面ABCD,DA=AB=BC=$\frac{1}{2}$CD=1.AB∥DC,∠CPD=90°.
(1)證明:平面PAD⊥平面PCD;
(2)若二面角A-PC-D的大小為45°.求CP.

分析 (1)根據(jù)面面垂直的判定定理即可證明平面PAD⊥平面PCD;
(2)根據(jù)二面角平面角的定義,得到∠DPA=45°,根據(jù)直徑三角形的邊角關系即可求CP.

解答 證明:(1)取CD的中點O,連接AO,OB,
∵DA=AB=BC=$\frac{1}{2}$CD=1.
∴ABCO是菱形,
則OB⊥AC,
∵平面PAC⊥平面ABCD,
∴OB⊥平面PAC,則PC⊥OB,
∵OB∥AD,∴PC⊥AD,
∵∠CPD=90°,∴PC⊥PD,
∵PD∩AD=D,∴PC⊥平面PAD,
∵PC?平面PCD,∴平面PAD⊥平面PCD;
(2)∵PC⊥平面PAD,∴PC⊥PA,PC⊥PD,
則∠DPA是二面角A-PC-D的平面角,
∵二面角A-PC-D的大小為45°.
∴∠DPA=45,
∵AB=AC=1,∴AC=$\sqrt{3}$,
∵AD⊥平面PAD,∴AD⊥PA,
則PA=AD=1,在直角三角形APC中,
PC=$\sqrt{A{C}^{2}-A{P}^{2}}$=$\sqrt{3-1}$=$\sqrt{2}$.

點評 本題主要考查面面垂直的判斷,以及二面角的應用,根據(jù)相應的定定理以及二面角的定義找出二面角的平面角是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若復數(shù)z滿足(1+2i)z=(1-i),則|z|=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,E、F、G分別為線段BC、PA、AB上的點,H為△PCD的重心,PA=AB=3,F(xiàn)A=BG=CE=1.
(1)求證:BF∥平面PDE;
(2)求異面直線GH與PE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設袋中有4只白球和2只黑球,現(xiàn)從袋中無放回地摸出2個球.
(1)求這兩只球都是白球的概率.
(2)求這兩只球中一只是白球另一只是黑球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.從1,2,3,…,7共7個數(shù)字中任取3個不同的數(shù)字,則這3個數(shù)字由小到大可組成等差數(shù)列的概率為( 。
A.$\frac{11}{35}$B.$\frac{9}{35}$C.$\frac{1}{5}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x+1|},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$若實數(shù)x1、x2、x3、x4,滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,則x1+x2+x3+x4的取值范圍是( 。
A.(0,+∞)B.($\frac{1}{2}$,$\frac{9}{4}$]C.(1,$\frac{9}{2}$]D.($\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,過橢圓C的左焦點F且傾斜角為60°的直線與圓x2+y2=$\frac{^{2}}{{a}^{2}}$相切.
(I)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于M,N兩點(M,N不是左、右頂點),若以MN為直徑的圓恰好過橢圓C的右頂點A,O為坐標原點,若點P滿足2$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求直線AP的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=x2的圖象在某一交點處的切線重合,則a=${e}^{\frac{2}{e}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若cosα=$\frac{1}{5}$,且α是第四象限角,則cos(α+$\frac{5π}{2}$)=$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

同步練習冊答案