1.函數(shù)f(x)=ex+4x-3零點的個數(shù)是1.

分析 作出y=ex與y=3-4x的函數(shù)圖象,根據(jù)函數(shù)圖象的交點個數(shù)判斷零點個數(shù).

解答 解:令f(x)=0得ex=3-4x,
作出y=ex和y=3-4x的函數(shù)圖象,如圖所示:

由圖象可知y=ex和y=3-4x的函數(shù)圖象只有一個交點,
∴f(x)=ex+4x-3只有一個零點.
故答案為:1.

點評 本題考查了函數(shù)零點與函數(shù)圖象的關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,且a=4,b+c=5.A=60°,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.3$\sqrt{3}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( 。
A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.正四棱柱ABCD-A1B1C1D1底面邊長為2,高AA1=2$\sqrt{3}$,A,B,C,D在球O上,球O與A1B交于E,與D1C交于F,且AE垂直A1B,則球O的表面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2處取得極大值6,在x=1處取得極小值.
(1)求a,b,c的值;       
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在區(qū)間[-3,3]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線x+y+5=0的傾斜角為( 。
A.120°B.45°C.135°D.60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.用數(shù)學歸納法證明:1+x+x2+x3+…+xn+2=$\frac{{1-{x^{n+3}}}}{1-x}$(x≠1,n∈N+)成立時,驗證n=1的過程中左邊的式子是(  )
A.1B.1+xC.1+x+x2D.1+x+x2+x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.命題P的否定是:“對所有正數(shù)x,$\sqrt{x}$>x+1”,則命題P是存在正數(shù)x,$\sqrt{x}$≤x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.指數(shù)函數(shù)y=ax和對數(shù)函數(shù)y=logax(其中a>0,a≠1)的圖象分別為C1和C2,點M在曲線C1上,線段OM(O為坐標原點)交曲線C1于另一點N,若曲線C2上存在一點P,滿足點P的橫坐標與點M的縱坐標相等,點P的縱坐標是點N橫坐標的兩倍,則點P的坐標為(4,loga4).

查看答案和解析>>

同步練習冊答案