已知點(2,1)與(1,2)在函數(shù)f(x)=2ax+b的圖象上,求f(x)的解析式,并畫出f(x)的草圖.
考點:函數(shù)解析式的求解及常用方法
專題:計算題,作圖題,函數(shù)的性質及應用
分析:由題意,2a2+b=1,2a+b=2;從而解出a,b;作函數(shù)圖象.
解答: 解:由題意,22a+b=1,2a+b=2;
即2a+b=0,a+b=1;
解得a=-1,b=2;
故f(x)=2-x+2,作其圖象如下,
點評:本題考查了函數(shù)性質的應用及作圖能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)z=2+i,則z在復平面內對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-x3,a∈R,
(1)若f(x)是R上的單調函數(shù),求實數(shù)a的取值范圍;
(2)若f(x)在[-2,2]上的值域也是[-2,2],求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2-3x+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)求函數(shù)f(x)的單調區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[t,t+4]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設非負實數(shù)x,y滿足x-y+1≥0且3x+y-3≤0,則4x+y的最大值為(  )
A、1
B、
7
2
C、
9
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合U=R,M={x|x>2011},N={x|0<x<1},則下列關系中正確的是( 。
A、M∪(∁UN)=R
B、M∩N={x|0<x<1}
C、N⊆∁UM
D、M∩N≠∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某服飾公司設計類一款服飾飾品,如圖外面是紅色透明水晶材質,里面是一個球形綠色玉質寶珠,其軸截面呦半橢圓C1
x2
a2
+
y2
b2
=1,(x≥0)與半橢圓C2
y2
b2
+
x2
c2
=1,(x<0),(其中a2=b2+c2,a>b>c>0)組成.設點F0、F1、F2是相應橢圓的焦點,A1、A2和B1、B2是軸截面與x,y軸的交點,陰影部分是寶珠軸截面,F(xiàn)0、F1、F2在寶珠珠面上,則橢圓C1的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
5
5
,且A(0,1)是橢圓C的頂點.
(1)求橢圓C的方程;
(2)過點A作斜率為1的直線l,設以橢圓C的右焦點F為拋物線E:y2=2px(p>0)的焦點,若點M為拋物線E上任意一點,求點M到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“(x-2)(x+1)≥0”是“
x-2
x+1
≥0”的
 
條件(充分不必要、必要不充分、充要、既不充分又不必要).

查看答案和解析>>

同步練習冊答案