13.已知區(qū)域D:{(x,y)||y|≤|x|},則(  )
A.?x0>0,(x0,$\frac{1}{2}$)∈DB.?x0>0,(x0,$\frac{1}{2}$x0)∉DC.?x0>0,(x0,$\frac{1}{2}$)∈DD.?x0>0,(x0,$\frac{1}{2}$x0)∉D

分析 首先畫出不等式表示的區(qū)域,關(guān)鍵區(qū)域特征,對選項(xiàng)選擇.

解答 解:由已知不等式表示的區(qū)域(x>0)如圖
由題意,?x0>0,(x0,$\frac{1}{2}$)∈D正確;
故選C

點(diǎn)評 本題考查了平面區(qū)域的畫法以及特稱命題與全稱命題;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在下列區(qū)間中,函數(shù)f(x)=e-x+4x-3的零點(diǎn)所在的區(qū)間為( 。
A.(-$\frac{1}{4}$,0)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a(lnx-1)+$\frac{1}{x}$的圖象與x軸相切,g(x)=(b-1)logbx-$\frac{{{x^2}-1}}{2}$.
(Ⅰ)求證:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt$,求證:0<g(x)<$\frac{{{{(b-1)}^2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線為l,圓C:(x-a)2+y2=8與l交于A,B兩點(diǎn),若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O為坐標(biāo)原點(diǎn)),則雙曲線Γ的離心率為( 。
A.$\frac{{2\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{5}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|y=lgx},B={x|x-1≤0},則A∩B=(  )
A.(0,1]B.(0,1)C.(-1,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖,則該幾何體的體積為(  )
A.18B.20C.24D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x-a)2lnx,a∈R.
(1)若$a=3\sqrt{e}$,其中e為自然對數(shù)的底數(shù),求函數(shù)$g(x)=\frac{f(x)}{x}$的單調(diào)區(qū)間;
(2)若函數(shù)f(x)既有極大值,又有極小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若對?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l與曲線y=ex相切于點(diǎn)A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

同步練習(xí)冊答案