【題目】直角坐標(biāo)系xOy中,已知MN是圓C:(x2)2+(y3)2=2的一條弦,且CMCN,PMN的中點(diǎn).當(dāng)弦MN在圓C上運(yùn)動(dòng)時(shí),直線lxy5=0上總存在兩點(diǎn)A,B,使得恒成立,則線段AB長度的最小值是_____.

【答案】

【解析】

依題意,點(diǎn)P在以C為圓心以1為半徑的圓上,要使得∠APB恒成立,則點(diǎn)P在以AB為直徑的圓內(nèi)部,所以AB的最小值為圓的直徑的最小值.

因?yàn)?/span>PMN的中點(diǎn),所以CPMN,

又因?yàn)?/span>CMCN,所以三角形CMN為等腰直角三角形,所以CP=1,

即點(diǎn)P在以C為圓心,以1為半徑的圓上,點(diǎn)P所在圓的方程為(x2)2+(y3)2=1,

要使得∠APB恒成立,則點(diǎn)P所在的圓在以AB為直徑的圓的內(nèi)部,

AB在直線lxy5=0上,

C到直線lxy5=0的距離d.

所以以AB為直徑的圓的半徑的最小值為r=31,

所以AB的最小值為2r=62.

故答案為:62.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xcos+a,a∈R.

(I)求曲線y=f(x)在點(diǎn)x=處的切線的斜率;

(II)判斷方程f '(x)=0(f '(x)為f(x)的導(dǎo)數(shù))在區(qū)間(0,1)內(nèi)的根的個(gè)數(shù),說明理由;

(III)若函數(shù)F(x)=xsinx+cosx+ax在區(qū)間(0,1)內(nèi)有且只有一個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,tanA=,tanB=

1)求C的大。

2)若△ABC的最小邊長為,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式 的解集為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,對(duì)人民生命安全和生產(chǎn)生活造成嚴(yán)重影響.在黨和政府強(qiáng)有力的抗疫領(lǐng)導(dǎo)下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟(jì)下降對(duì)企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元()滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是2萬件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)一萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來計(jì)算)

1)將2020年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,8686,88,88,88,88若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)都是正數(shù)的等比數(shù)列{},Sn為前n項(xiàng)和,且S10=10,S30=70,那么S40=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長寬高皆為八分之一正方體的邊長的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn)。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案