7.等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=[an],求數(shù)列{bn}的前10項和,其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.

分析 (Ⅰ)設等差數(shù)列{an}的公差為d,根據(jù)已知構(gòu)造關于首項和公差方程組,解得答案;
(Ⅱ)根據(jù)bn=[an],列出數(shù)列{bn}的前10項,相加可得答案.

解答 解:(Ⅰ)設等差數(shù)列{an}的公差為d,
∵a3+a4=4,a5+a7=6.
∴$\left\{\begin{array}{l}2{a}_{1}+5d=4\\ 2{a}_{1}+10d=6\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a}_{1}=1\\ d=\frac{2}{5}\end{array}\right.$,
∴an=$\frac{2}{5}n+\frac{3}{5}$;
(Ⅱ)∵bn=[an],
∴b1=b2=b3=1,
b4=b5=2,
b6=b7=b8=3,
b9=b10=4.
故數(shù)列{bn}的前10項和S10=3×1+2×2+3×3+2×4=24.

點評 本題考查的知識點是等差數(shù)列的通項公式,等差數(shù)列的性質(zhì),難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.用弧度制表示終邊與角150°相同的角的集合為( 。
A.{β|β=-$\frac{5π}{6}$+2kπ,k∈Z}B.{β|β=$\frac{5π}{6}$+k•360°,k∈Z}
C.{β|β=$\frac{2π}{3}$+2kπ,k∈Z}D.{β|β=$\frac{5π}{6}$+2kπ,k∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設等比數(shù)列{an}的公比|q|>1,前n項和為Sn,已知a3=2,S4=5S2,求a5+a7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={1,2,3},B={x|x2<9},則A∩B=( 。
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x<3或x>5},則A∩B=( 。
A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.函數(shù)F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若a=0時,y=G(x)為曲線y=F(x)的切線,求b的值;
(Ⅱ)若f(x)=F(x)-G(x),f(1)=0.證明:當e-2<a<1時,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設數(shù)列{an}的前n項和為Sn,已知a1=a,an+1=Sn+3n,n∈N*
(1)設bn=Sn-3n,求數(shù)列{bn}的通項公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=acost\\ y=1+asint\end{array}\right.$(t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪種曲線,并將C1的方程化為極坐標方程;
(Ⅱ)直線C3的極坐標方程為θ=α0,其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

同步練習冊答案