16.為調(diào)查乘客暈機情況,在某一次惡劣氣候飛行航程中,55名男乘客中有24名暈機,34名女乘客中有8名暈機.在檢驗這些乘客暈機是否與性別相關(guān)時,常采用的數(shù)據(jù)分析方法是(  )
A.頻率分布直方圖B.回歸分析C.獨立性檢驗D.用樣本估計總體

分析 根據(jù)題意,利用題目中的數(shù)據(jù)列2×2列聯(lián)表,求觀測值K2,對照數(shù)表得出概率結(jié)論,是獨立性檢驗.

解答 解:根據(jù)題意,結(jié)合題目中的數(shù)據(jù),列出2×2列聯(lián)表,
求出觀測值K2,對照數(shù)表可得出概率結(jié)論;
這種分析數(shù)據(jù)的方法是獨立性檢驗.
故選:C.

點評 本題考查了獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)2sinx=a,則a的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若cos(A-B)cosB=sin(A-B)sinB,則△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:y=x+1與函數(shù)f(x)=eax+b的圖象相切,且f′(1)=e.
(1)求實數(shù)a,b的值;
(2)若在曲線y=mf(x)上存在兩個不同的點A(x1、mf(x1),B(x2,mf(x2))關(guān)于y軸的對稱點均在直線l上,證明:x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,a1=3,其中前n項和為Sn.等比數(shù)列{bn}的各項均為正數(shù),b1=1,且b2+S3=21,b3=S2
(1)求an與bn
(2)設(shè)數(shù)列{bn}的前n項和為Tn,求使不等式4Tn>S15成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若數(shù)列{an}滿足a1=1,an+1-an=2n-1
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=3,bn+1-bn=2n+3,且cn=$\frac{{a}_{n}•_{n}}{n}$,求數(shù)列{cn}的通項公及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}滿足:${a_3}=\frac{1}{5},{a_n}-{a_{n+1}}=2{a_n}{a_{n+1}}$,則數(shù)列{anan+1}前10項的和為( 。
A.$\frac{10}{21}$B.$\frac{20}{21}$C.$\frac{9}{19}$D.$\frac{18}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的通項公式為 an=(n-k1)(n-k2),其中k1,k2∈Z:
(1)試寫出一組k1,k2∈Z的值,使得數(shù)列{an}中的各項均為正數(shù);
(2)若k1=1、k2∈N*,數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{n}$,且對任意m∈N*(m≠3),均有b3<bm,寫出所有滿足條件的k2的值;
(3)若0<k1<k2,數(shù)列{cn}滿足cn=an+|an|,其前n項和為Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且僅有4組,S1、S2、…、Sn中至少3個連續(xù)項的值相等,其他項的值均不相等,求k1,k2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.“我是歌手”是芒果衛(wèi)視推出的節(jié)目,其中歌手由大眾評審打分,已知大眾評審有五個年齡層,每組100人,共500人.年齡層分布知如下:
10組:12-19歲
20組:20-29歲
30組:30-39歲
40組:40-49歲
50組:50歲以上
在某歌手演唱完一首民族歌曲后,得票情況如圖所示:
已知該歌手共獲得了215張選票.
(1)完成2×2列聯(lián)表:
投票
年齡
合計
10組   
50組   
合計   
(2)判斷是否有99%的把握認(rèn)為投票與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)
P(x2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(參考公式x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,n=n1++n2++n+1+n+2
(3)以上圖中投票情況,從20組和40組中隨機各抽取1人,求其中投票的人數(shù)ξ的分布列及其期望.

查看答案和解析>>

同步練習(xí)冊答案