分析 (1)由導(dǎo)函數(shù)f′(1)=e,可通過求導(dǎo),得a,b.
(2)將A、B兩點的對稱點坐標找到,由在直線可得一個方程組,對方程組處理利用換元可將問題轉(zhuǎn)化為求g(t)的最小值大于0的問題.
解答 解:(1)∵f(x)=eax+b
∴f′(x)=aeax+b
∵f′(1)=e,
∴a=1,b=0,
(2)由(1)得y=mex,
A、B兩點關(guān)于y軸的對稱點分別為A′(-x1,m${e}^{{x}_{1}}$)、B′(-x2,m${e}^{{x}_{2}}$),
∵A′、B′均在直線l上,
∴m${e}^{{x}_{1}}$=1-x1,m${e}^{{x}_{2}}$=1-x2,
兩式相加可得:∴m(${e}^{{x}_{1}}$+${e}^{{x}_{2}}$)=2-(x1+x2),
兩式相減可得:∴m(${e}^{{x}_{2}}$-${e}^{{x}_{1}}$)=-(x2-x1 ),
∴$\frac{{e}^{{x}_{1}}+{e}^{{x}_{2}}}{{e}^{{x}_{2}}-{e}^{{x}_{1}}}$=$\frac{2-({x}_{1}-{x}_{2})}{-({x}_{2}-{x}_{1})}$,
∴(x1+x2)-2=$\frac{{e}^{{x}_{1}}+{e}^{{x}_{2}}}{{e}^{{x}_{2}}-{e}^{{x}_{1}}}$(x2-x1)=$\frac{{e}^{{x}_{2}-{x}_{1}}+1}{{e}^{{x}_{2}-{x}_{1}}-1}$(x2-x1),
即x1+x2=$\frac{{e}^{{x}_{2}-{x}_{1}}+1}{{e}^{{x}_{2}-{x}_{1}}-1}$(x2-x1)+2,
欲證x1+x2>4,
即證(${e}^{{x}_{2}-{x}_{1}}$+1)(x2-x1)>2(${e}^{{x}_{2}-{x}_{1}}$-1),
設(shè)t=x2-x1>0,
即證(et+1)t-2(et-1)>0,
設(shè)g(t)=(et+1)t-2(et-1),g′(t)=tet-et+1,
∵g″(t)=tet>0,
∴g′(t)在(0,+∞)單調(diào)遞增.又g′(0)=0,
∴在(0,+∞)上g′(t)>0,
∴g(t)在(0,+∞)單調(diào)遞增,又g(0)=0,
∴在(0,+∞)上g(t)>0,
原式得證.
點評 本題的第一問較簡單,第二問是在找到對稱點后代入直線方程,對方程處理后換元,構(gòu)造新的函數(shù),對新函數(shù)求兩次導(dǎo),再由單調(diào)性確定最小值.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 18 | C. | 21 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 頻率分布直方圖 | B. | 回歸分析 | C. | 獨立性檢驗 | D. | 用樣本估計總體 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{π}{4}$] | B. | [$\frac{π}{4}$,$\frac{π}{2}$) | C. | ($\frac{π}{2}$,$\frac{3π}{4}$] | D. | [$\frac{3π}{4}$,π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com