14.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,底面ABCD為梯形,AB∥CD,AB=2DC=2$\sqrt{3}$,且△PAD與△ABD均為正三角形,E為AD的中點(diǎn),G為△PAD的重心,AC∩BD=F
(1)求證:GF∥平面PCD;
(2)求三棱錐G-PCD的體積.

分析 (1)連接AG并延長(zhǎng)與PD交于H,連接CH,推導(dǎo)出△DFC∽△AFB,從而AF:FC=AB:DC=2:1,由G是△PAD的重心,得AG:GH=2:1,進(jìn)而GF∥HC,由此能證明GF∥平面PCD.
(2)三棱錐G-PCD的體積VG-PCD=$\frac{2}{3}{V_{E-PCD}}=\frac{2}{3}{V_{p-ECD}}$=$\frac{1}{3}$VP-ACD.由此能求出結(jié)果.

解答 證明:(1)連接AG并延長(zhǎng)與PD交于H,連接CH
∵AB∥CD,∴△DFC∽△AFB,
∴AF:FC=AB:DC=2:1
∵G是△PAD的重心,∴AG:GH=2:1
∴GF∥HC
∵HC?平面PCD,GF?平面PCD,∴GF∥平面PCD;
(2)∵△PAD與△ABD均為正三角形,E為AD的中點(diǎn),
∴PE⊥AD,∵平面PAD⊥平面ABCD,∴PE⊥平面ABCD,
∵AB=2DC=2$\sqrt{3}$,∴PE=3,
∵底面ABCD為梯形,AB∥CD,
∴${S}_{△ADC}=\frac{1}{2}×2\sqrt{3}×\sqrt{3}×sin120°$=$\frac{3}{2}$$\sqrt{3}$,
∴${V}_{P-ACD}=\frac{1}{3}×3×\frac{3\sqrt{3}}{2}$=$\frac{3}{2}$$\sqrt{3}$,
三棱錐G-PCD的體積VG-PCD=$\frac{2}{3}{V_{E-PCD}}=\frac{2}{3}{V_{p-ECD}}$=$\frac{1}{3}$${V_{P-ACD}}=\frac{{\sqrt{3}}}{2}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間思維能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\sqrt{x-2}$+lg(5-x)的定義域是[2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在數(shù)列{an}中,設(shè)f(n)=an,且f(n)滿足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
(1)設(shè)bn=$\frac{{a}_{n}}{{2}^{n-1}}$,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{3an-1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將函數(shù)f(x)=cos2x的圖象向右平移$\frac{π}{3}$個(gè)單位得到g(x)的圖象,若g(x)在(-2m,-$\frac{π}{6}$)和(3m,$\frac{5π}{6}$)上都單調(diào)遞減,則實(shí)數(shù)m的取值范圍為( 。
A.[$\frac{π}{9}$,$\frac{5π}{18}$)B.[$\frac{π}{9}$,$\frac{π}{3}$)C.($\frac{π}{12}$,$\frac{5π}{18}$)D.[$\frac{π}{18}$,$\frac{5π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若變量x,y滿足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2ax+by(a>0,b>0)取得最大值的是6,則$\frac{1}{a}+\frac{2}$的最小值為7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.觀察下列各等式:
1+1=$\frac{1}{2}$×4
(2+1)+(2+2)=1×7
(3+1)+(3+2)+(3+3)=$\frac{3}{2}$×10
(4+1)+(4+2)+(4+3)+(4+4)=2×13

按照此規(guī)律,則(n+1)+(n+2)+(n+3)+…+(n+n)=$\frac{n}{2}×(3n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知單位向量$\overrightarrow a$,$\overrightarrow b$,滿足$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在幾何體A1B1C1-ABC中,∠ACB=90°,AC=BC=2,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1,且AA1=1.
(Ⅰ)求證:平面A1B1C1⊥平面A1ABB1;
(Ⅱ)求平面ABC與平面A1BC1所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案