18.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanA;    
(Ⅱ)若c=1,求△ABC的面積.

分析 (I)在△ABC中,由cosB=$\frac{2\sqrt{5}}{5}$,B為銳角,可得tanB,又tanC=$\frac{1}{3}$,利用tan(B+C)=$\frac{tanB+tanC}{1-tanBtanC}$即可得出.
(II) 0°<A<180°,由(I)結(jié)論可得:A=135°.在△ABC中,B,C均為銳角,可得cosB,tanC,sinB,sinC,再利用正弦定理可得a,即可得出△BAC的面積S=$\frac{1}{2}$acsin B.

解答 解:(I)在△ABC中,∵cosB=$\frac{2\sqrt{5}}{5}$,B為銳角,tanB=$\frac{1}{2}$,
又tanC=$\frac{1}{3}$,tan(B+C)=$\frac{tanB+tanC}{1-tanBtanC}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1,
∴tanA=tan(180°-(B+C))=-tan(B+C),
故tanA=-1.
(II)∵0°<A<180°,由(I)結(jié)論可得:A=135°.
∴在△ABC中,B,C均為銳角,∵$cosB=\frac{{2\sqrt{5}}}{5}$,$tanC=\frac{1}{3}$,
∴$sinB=\frac{{\sqrt{5}}}{5}$,$sinC=\frac{{\sqrt{10}}}{10}$.
由$\frac{a}{sinA}=\frac{c}{sinC}$,得$a=\sqrt{5}$.
故△BAC的面積為:S=$\frac{1}{2}$acsin B=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)就不關(guān)系式、和差公式、正弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若m∈(4,7),則直線y=kx+k與圓x2+y2+mx+4=0至少有一個(gè)交點(diǎn)的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=2,a5=16,則S1+S2+…+Sn=2n+1-n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖是一個(gè)算法程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的結(jié)果恰好是$\frac{1}{4}$,則空白處的關(guān)系式可以是( 。
A.y=2-xB.y=2xC.y=x${\;}^{-\frac{1}{2}}$D.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)y=ln($\sqrt{1+a{x}^{2}}$-2x)為奇函數(shù),則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.記數(shù)列{an}的前n項(xiàng)和為Sn,若存在實(shí)數(shù)M>0,使得對(duì)任意的n∈N*,都有|Sn|<M,則稱數(shù)列{an}為“和有界數(shù)列”.下列命題正確的是(  )
A.若{an}是等差數(shù)列,且首項(xiàng)a1=0,則{an}是“和有界數(shù)列”
B.若{an}是等差數(shù)列,且公差d=0,則{an}是“和有界數(shù)列”
C.若{an}是等比數(shù)列,且公比|q|<1,則{an}是“和有界數(shù)列”
D.若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)m,n是不同的直線,α,β,γ是不同的平面,則下列命題中真命題的是( 。
A.若α⊥β,m∥α,則m⊥βB.若m?α,n?β,且m⊥n,則α⊥β
C.若α∥β,β∥λ,則α∥λD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(a2+b2-c2)tanC=$\sqrt{2}$ab.
(1)求角C的大;
(2)若c=2,b=2$\sqrt{2}$,求邊a的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制進(jìn)行處理的,二進(jìn)制即“逢二進(jìn)一”,如(1 101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制數(shù)是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制數(shù)($\underset{\underbrace{11…1}}{14個(gè)}$01)2轉(zhuǎn)換成十進(jìn)制數(shù)是(  )
A.216-1B.216-2C.216-3D.216-4

查看答案和解析>>

同步練習(xí)冊(cè)答案