分析 連A1B,沿BC1將△CBC1展開與△A1BC1在同一個平面內(nèi),不難看出CP+PA1的最小值是A1C的連線.(在BC1上取一點與A1C構成三角形,因為三角形兩邊和大于第三邊)由余弦定理即可求解.
解答 解:連A1B,沿BC1將△CBC1展開與△A1BC1在同一個平面內(nèi),如圖所示,
連A1C,則A1C的長度就是所求的最小值.
BC1=$\sqrt{2}$,A1C1=$\sqrt{2}$,A1B=2,通過計算可得∠A1C1P=90°
又∠BC1C=45°
∴∠A1C1C=135°
由余弦定理可求得A1C=$\sqrt{2+1-2×\sqrt{2}×1×(-\frac{\sqrt{2}}{2})}$=$\sqrt{5}$,
故答案為:$\sqrt{5}$.
點評 本題考查棱柱的結構特征,余弦定理的應用,考查學生的計算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}π}{3}$ | B. | 2$\sqrt{2}$π | C. | $\frac{8\sqrt{2}π}{3}$ | D. | 4$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a∈R,b=0 | B. | a∈R,b=1 | C. | a=0,b∈R | D. | a=1,b∈R |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com