15.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)當(dāng)a=3時(shí),求△ABC周長(zhǎng)的取值范圍.

分析 (Ⅰ)由已知及正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,可得$cosAsinC=\frac{{\sqrt{3}}}{3}sinCsinA$,
又sinC≠0,可求$tanA=\sqrt{3}$,結(jié)合范圍A∈(0,π),即可求得A的值.
(Ⅱ)由余弦定理得9=b2+c2-bc,利用基本不等式可求bc≤9,又由9=b2+c2-bc=(b+c)2-3bc,得b+c≤6,又b+c>3,可得范圍6<a+b+c≤9.

解答 解:(Ⅰ)由$b=acosC+\frac{{\sqrt{3}}}{3}csinA$及正弦定理得,$sinB=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,…(1分)
∵B=π-(A+C),
∴$sinB=sin({A+C})=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,…(2分)
∴$sinAcosC+cosAsinC=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,…(3分)
∴$cosAsinC=\frac{{\sqrt{3}}}{3}sinCsinA$,
∵C∈(0,π),
∴sinC≠0,…(4分)
∴$cosA=\frac{{\sqrt{3}}}{3}sinA$
易知cosA≠0,
∴$tanA=\sqrt{3}$,…(5分)
∵A∈(0,π)
∴$A=\frac{π}{3}$.…(6分)
(Ⅱ)由余弦定理a2=b2+c2-2bccosA,得9=b2+c2-bc,…(7分)
∵b2+c2≥2bc,當(dāng)且僅當(dāng)b=c時(shí),“=”成立,…(8分)
∴9=b2+c2-bc≥bc,即bc≤9,當(dāng)且僅當(dāng)b=c=3時(shí),“=”成立,…(9分)
又由9=b2+c2-bc=(b+c)2-3bc,得(b+c)2=9+3bc≤36,
∴b+c≤6,…(10分)
∵b+c>3,
∴6<a+b+c≤9,…(11分)
∴求△ABC周長(zhǎng)的取值范圍(6,9].…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式等知識(shí)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=ax3+b(a,b∈R)是R上的奇函數(shù),則  ( 。
A.a∈R,b=0B.a∈R,b=1C.a=0,b∈RD.a=1,b∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β是銳角,tanα,tanβ是方程x2-5x+6=0的兩根,則α+β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)?x∈[-$\sqrt{3}$,$\frac{3}{2}+2\sqrt{3}$]恒成立,則a的取值范圍是( 。
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=1,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD,如圖(2).
(Ⅰ)求證:AP∥平面EFG;
(Ⅱ)求證:平面PAD⊥平面EFG;
(Ⅲ)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將序號(hào)分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張.如果分給同一人的2張參觀券連號(hào),那么不同的分法種數(shù)是( 。
A.24B.96C.144D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知從某批產(chǎn)品中隨機(jī)抽取1件是二等品的概率為0.2.
(1)若從該產(chǎn)品中有放回地抽取產(chǎn)品2次,每次抽取1件,設(shè)事件A:“取出的2件產(chǎn)品中至多有1件是二等品”,求P(A);
(2)若該批產(chǎn)品共有20件,從中任意抽取2件,X表示取出的2件產(chǎn)品中二等品的件數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了對(duì)某研究性課題進(jìn)行研究,用分層抽樣的方法從某校高中各年級(jí)中抽取若干名學(xué)生組成研究小組,數(shù)據(jù)見表:
 年級(jí) 相關(guān)人數(shù)抽取人數(shù) 
 高一 36 x
 高二 54 3
 高三 18 y
(Ⅰ)求表中x,y的值;
(Ⅱ)若從高二、高三抽取的人中任選2人作專題發(fā)言,求這2人都來自高二的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|y=$\sqrt{x-1}$},B={x|-1≤2x-1≤3},則A∩B=( 。
A.[0,1]B.[1,2]C.[1,$\frac{3}{2}$]D.[0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案