【題目】選修4-5:不等式選講

已知函數(shù)

(1)解不等式;

(2)若關于的方程的解集為空集,求實數(shù)的取值范圍.

【答案】(1) 2

【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解,最后求并集(2)先根據(jù)絕對值定義將函數(shù)化為分段函數(shù),求對應函數(shù)值域,即得fx4的取值范圍,根據(jù)倒數(shù)性質(zhì)可得取值范圍,最后根據(jù)方程解集為空集,確定實數(shù)的取值范圍

試題解析:解:(1)解不等式|x﹣2|+|2x+1|>5,

x2時,x﹣2+2x+15,解得:x2;

x2時,2﹣x+2x+15,無解,

x時,2﹣x﹣2x﹣15,解得:x,

故不等式的解集是(﹣∞2,+∞);

2fx=|x﹣2|+|2x+1|=

fx)的最小值是,所以函數(shù)fx)的值域為[,+∞),

從而fx﹣4的取值范圍是[,+∞),

進而的取值范圍是(﹣∞,]∪0+∞).

根據(jù)已知關于x的方程=a的解集為空集,所以實數(shù)a的取值范圍是(﹣0]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)求曲線在點處的切線方程;

(Ⅱ)求證:存在唯一的,使得曲線在點處的切線的斜率為;

(Ⅲ)比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的圓心坐標為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).

(1)求圓的極坐標方程;

(2)設與圓的交點為, 軸的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)解不等式;

(2)若關于的方程的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形, ,

(1)求證:

(2)若, ,平面平面,直線與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐, 平面, 分別為的中點,設直線與平面交于點.

1已知平面平面,求證: .

2求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為、,設點,在中, ,周長為.

1)求橢圓的方程;

2)設不經(jīng)過點的直線與橢圓相交于兩點,若直線的斜率之和為,求證:直線過定點,并求出該定點的坐標;

3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據(jù)面積的不同取值范圍,討論存在的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

)求函數(shù)的最小值.

)是否存在一次函數(shù),使得對于,總有,且成立?若存在,求出的表達式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班為了活躍元旦晚會氣氛,主持人請12位同學做一個游戲,第一輪游戲中,主持人將標有數(shù)字1到12的十二張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字7到12的卡片的同學留下,其余的淘汰;第二輪將標有數(shù)字1到6的六張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字4到6的卡片的同學留下,其余的淘汰;第三輪將標有數(shù)字1,2,3的三張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字2,3的卡片的同學留下,其余的淘汰;第四輪用同樣的辦法淘汰一位同學,最后留下的這位同學獲得一個獎品.已知同學甲參加了該游戲.

(1)求甲獲得獎品的概率;

(2)設為甲參加游戲的輪數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案